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Abstract

Profile mixture models capture distinct biochemical constraints on the amino acid substitution process at different
sites in proteins. These models feature a mixture of time-reversible models with a common matrix of exchangeabil-
ities and distinct sets of equilibrium amino acid frequencies known as profiles. Combining the exchangeability matrix
with each profile generates the matrix of instantaneous rates of amino acid exchange for that profile. Currently, em-
pirically estimated exchangeability matrices (e.g. the LG matrix) are widely used for phylogenetic inference under
profile mixture models. However, these were estimated using a single profile and are unlikely optimal for profile mix-
ture models. Here, we describe the GTRpmix model that allows maximum likelihood estimation of a common ex-
changeability matrix under any profile mixture model. We show that exchangeability matrices estimated under
profile mixture models differ from the LG matrix, dramatically improving model fit and topological estimation ac-
curacy for empirical test cases. Because the GTRpmix model is computationally expensive, we provide two exchange-
ability matrices estimated from large concatenated phylogenomic-supermatrices to be used for phylogenetic
analyses. One, called Eukaryotic Linked Mixture (ELM), is designed for phylogenetic analysis of proteins encoded
by nuclear genomes of eukaryotes, and the other, Eukaryotic and Archaeal Linked mixture (EAL), for reconstructing
relationships between eukaryotes and Archaea. These matrices, combined with profile mixture models, fit data bet-
ter and have improved topology estimation relative to the LG matrix combined with the same mixture models.
Starting with version 2.3.1, IQ-TREE2 allows users to estimate linked exchangeabilities (i.e. amino acid exchange
rates) under profile mixture models.

Key words: frequency profile mixtures, phylogenetics, maximum likelihood, model of sequence evolution, general
time reversible model.

and when combined with the equilibrium frequencies of
the amino acids, it describes the instantaneous rates of
interchange between each pair of amino acids.

In most phylogenetic analyses the exchangeability ma-

Introduction

Models of amino acid substitution are of key importance
to probabilistic molecular phylogenetic analyses of protein

sequences. Typically, the amino acid substitution process is
modeled via a site-independent time-reversible Markov
process on a tree. The parameters of this model include
a set of fixed equilibrium frequencies of the amino acids
(referred to in this work as a profile) and a fixed matrix of
amino acid exchange rates—exchangeabilities—through-
out the tree. The exchangeability matrix accounts for some
biological, chemical, and physical amino acid properties
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trix used is chosen from a set of fixed empirically estimated
matrices. The first empirically estimated exchangeabilities
were derived from the Dayhoff (Dayhoff et al. 1978) and
Jones—Taylor-Thornton (JTT) (Jones et al. 1992) matrices
that were obtained by counting the substitutions between
each amino acid pair using ancestral sequence reconstruc-
tion and a parsimony-based approach to analyze data-
bases of multiple alignments along with their estimated
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phylogenies. Subsequently, a maximum likelihood approach
was used to improve exchangeability estimation leading to
the development of the “Whelan and Goldman” (WAG)
model (Whelan and Goldman 2001). Le and Gascuel ex-
panded this approach (Le and Gascuel 2008) by considering
larger data sets and by incorporating heterogeneity of rates
across sites in the likelihood computation via a site-rate par-
tition model. The resulting matrix, known as the “Le and
Gascuel” (LG) matrix, is currently very widely used for phylo-
genetic inference based on protein sequences. Expanding on
these, Minh et al. (2021) introduced QMaker, a maximum
likelihood method to estimate an exchangeability matrix
from a large protein data set consisting of multiple inde-
pendent sequence alignments. The authors used QMaker
to estimate a number of additional matrices to be used
for phylogenetic analyses of specific taxonomic groups
(e.g. Qbird, Q.insect, and Q.plant). Other matrices have
been developed to fit proteins encoded on certain organel-
lar genomes (e.g. cpREV Adachi et al. 2000) or particular
gene families (e.g. rtREV Dimmic et al. 2002).

All of the foregoing exchangeability matrices were ob-
tained assuming that all sites evolve according to the
same process and share a single set of equilibrium amino
acid frequencies (a single profile). However, because of dif-
ferent functional constraints and structural microenviron-
ments within proteins, there are distinct ranges of
admissible amino acids at sites (Pal et al. 2006; Goldstein
2008; Franzosa and Xia 2009). Profile mixture models,
such as the C10-C60 series and the UDM series (Si
Quang et al. 2008; Wang et al. 2008, 2014; Schrempf
et al. 2020), were designed to account for this heterogen-
eity of preferred amino acids across sites. These models are
mixtures of time-reversible Markov models, but they as-
sume a common exchangeability matrix and distinct pro-
files of stationary frequencies.

Exchangeabilities and amino acid profiles capture, in dif-
ferent ways, similar properties of the amino acid replace-
ment processes across sites. Ideally, one would want to
separate the properties that are captured by exchangeabil-
ities versus profiles. However, this is nontrivial since such
properties depend on features like the structural context
of sites in proteins, information that is absent from the
data used for analysis (see, for example, Spielman and
Wilke 2015). In current site-homogeneous approaches to
the estimation of exchangeabilities, site-specific amino
acid preferences are not explicitly modeled, so exchange-
abilities indirectly capture some of these site-specific signals
as average effects. It would be preferable if the profiles mod-
eled site-specific selective constraints and the exchangeabil-
ities modeled alignment-wide aspects of the substitution
process (e.g. mutational processes and genetic code effects).
Unfortunately, it is doubtful that these two aspects of
substitution processes can be completely disentangled.
Nevertheless, it seems clear that unless profiles are included
when estimating exchangeabilities, estimates of the latter
will reflect site-specific properties to a considerable degree.
This highlights the importance of re-estimating exchange-
abilities in the context of mixture models to avoid
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redundancy between the signals captured between profiles
and exchangeabilities.

Estimation of a single exchangeability matrix, within a
profile mixture setting, has been explored in a Bayesian
context by Lartillot and Philippe (2004) through the devel-
opment of various versions of the CAT model of
Phylobayes (Lartillot et al. 2013). The CAT-GTR model
uses Markov chain Monte Carlo techniques to jointly infer
frequency vectors, exchangeabilities, the affiliations of each
site to a given frequency vector, the rates at each site, the
branch lengths, and the tree topology. However, in prac-
tice, convergence may not be achieved in large data sets
with many sites and taxa in its current implementation
(Lartillot et al. 2013). In the maximum likelihood frame-
work, Wong and colleagues developed MAST (Wong
et al. 2024), an extension of IQ-TREE2 that, among other
things, allows the user to estimate a mixture model with
various options for linking and unlinking exchangeability
matrices and amino acid profiles, in conjunction with mix-
tures of tree topologies. While this implementation can be
very useful in many contexts, it is not practical for profile
mixture models with many profiles because, for each
profile, 189 exchangeability parameters need to be esti-
mated. For commonly used models with 40 to 60 profiles
(e.g. C40 or C60) or more (e.g. UDM64, UDM256, etc.),
this corresponds to >>7,500 estimated parameters.
These models would require complex and computation-
ally expensive optimization and will potentially be sus-
ceptible to problems associated with local optima,
over-parameterization, and identifiability.

Here, we describe the implementation of a General
Time-Reversible model via maximum likelihood estima-
tion in IQ-TREE2 for use with profile mixture models.
This GTR model (denoted as GTR20 in IQ-TREE2) has a
single set of optimizable exchangeability parameters
shared (“linked”) over all classes of the profile mixture.
By simulation, we show that our implementation accurate-
ly estimates exchangeability parameters and that it can im-
prove tree topology estimation accuracy. Additionally, we
show that the estimation of exchangeabilities under a pro-
file mixture model provides a much-improved fit on a well-
known empirical data set than the profile mixture model
with LG exchangeabilities.

Since the estimation of exchangeabilities can be compu-
tationally expensive and requires large data sets for accur-
ate parameter estimates, we provide two matrices
estimated from large concatenated supermatrices under
the GTR-C60 profile mixture model to be used as fixed
matrices for phylogenetic analyses. One of these, called eu-
karyotic linked mixture (ELM), is tailored for phylogenetic
analyses of proteins encoded by eukaryotic nuclear genes,
and the other, eukaryotic and archaeal linked (EAL), is for
reconstructing relationships between eukaryotes and
Archaea. We show, via three well-known empirical data
sets, that these matrices have better fit and topological ac-
curacy than the LG matrix when both are combined with
C60. Additionally, we show that these matrices perform
well with different sets of profiles.

G202 UdJBIN ZZ U0 1saNB AQ /28GE L./ L L 9ESW/6/L1/[0IE/aqW /00 dNOdILSPED.//:SA)Y WO} POPEOJUMO(



GTRpmix - https://doi.org/10.1093/molbev/msae174

MBE

Profile Mixture Models and Exchangeability
Optimization

The general time-reversible model (GTR) (Tavaré 1986) is a
Markov process where, for a profile &t = (71, 73, ..., T20),
with ZZL 7, = 1, and a matrix Q of instantaneous rates
of change between amino acids, diag(7)Q = Q'diag(r).
Because of this, one can parameterize Q via a non-negative
symmetric matrix S known as the exchangeability matrix.
Specifically, given an exchangeability matrix S = {s;;};,
and a profile 7, the entries of the time-reversible instantan-
eous rate matrix Q = {g; _j}ffﬂ associated to 7 are defined as

1) g =sjmj, fori#jand g; = — 2521,;# qjj, otherwise.

2) multiplying all entries by ( — Z,-z; gim)~", so that
branch lengths are interpretable as expected num-
ber of substitutions per site.

All entries of Q; are non-negative, row sums are 0,
nQr =0, and diag(m)Q, is symmetric. For any given @
and any ¢ > 0, exchangeability matrices S and ¢S vyield
the same instantaneous rate matrix Q, and thus produce
the same site-pattern probabilities. Therefore, we con-
strain one entry to be equal to 1 resulting in 189 free para-
meters from the exchangeability matrix.

Commonly used profile mixture models are, usually, mix-
tures of time-reversible models with a common exchange-
ability matrix S. Specifically, site profiles 7, are selected
independently with probability w. and, independently of
these, rates for sites, ry, are chosen with probability d.
Given the rates and site profile for a site p, the evolutionary
model is a GTR process with exchangeability matrix S along
atree T.Let P(x, | T, S, 7., ri) denote the conditional prob-
ability of site pattern x,, given its site rate, ry, and site profile,
.. Because the rates and site profiles are unobserved, the
likelihood contribution under the model for the site is the
marginal probability of the site pattern,

L(Sr T, {(nCl WC)}i {(rkl dk)}; xp)

=Y we Y dP(x, | T, S, 7 1), (1)

were {TCC}CC=1 is a collection of C profiles with corresponding
positive weights {WC}CC=1 summing to one, {rk}kK=1 is a collec-
tion of K non-negative scalar rate parameters with corre-
sponding positive rate weights {dk},'<<=1 also summing to
one, and Zfﬂ dire = 1.

To reduce the complexity and computational cost of
profile mixture models, fixed profiles are typically used
for tree estimation (Si Quang et al. 2008; Wang et al.
2008; Schrempf et al. 2020; Tice et al. 2021; Eme et al.
2023). In these cases, the only additional parameters com-
ing from the profile mixture are the weights of the profile,
giving C — 1 additional free parameters from the weights,
where C is the number of profiles. Different sets of profiles
have been estimated via databases of alignments. For

example, Si Quang et al. (2008) introduced the widely
used sets of profiles known as C10, C20, C30, C40, C50,
and C60 (generically referred to as CXX). These sets of pro-
files were estimated under uniform exchangeabilities (re-
ferred to as POISSON exchangeabilities). In each of these,
the number next to the “C” denotes the number of profiles
in the set. Other sets of profiles include the more recently
introduced UDM models (Schrempf et al. 2020), with sets
of profiles ranging from 4, 8, 16, and up to 4,096 classes.

For rates across sites, it is common to use a discretized
approximation to the gamma distribution with shape par-
ameter o and mean 1 (Yang 1994). For these distributions,
all rates have an equal probability of occurrence and are
continuous functions ri(a) of a. The shape parameter «
adds only one free parameter to a profile mixture model.
The discretized gamma distribution is commonly discre-
tized into 4-rate classes and is denoted G4.

In most of our analyses with the C-series models below,
we estimate the weights of the mixture; the default of
IQ-TREE is to use empirical weights (weights obtained dur-
ing the estimation of the original empirical profile frequen-
cies, rather than being re-estimated for the data at hand)
unless a “+F” component is included. In a similar fashion,
unless clearly stated, we also jointly estimate the shape
parameter a. Lastly, exchangeabilities are also jointly esti-
mated, unless clearly stated to be fixed a priori to previous-
ly estimated exchangeabilities (for example, to LG or
POISSON).

Given an MSA with n sites and a tree T, we estimate the
exchangeabilities by maximizing the log-likelihood across
all sites

US) =) _logL(s, T, {(me, wolb, (s db x,).  (2)
p=1

To do this, we arbitrarily fix the exchangeability between
Y and V (corresponding to the entry sq19,0 of S) to 1, and
we then estimate the 189 remaining exchangeabilities using
the BFGS-algorithm (Fletcher 1987), a well-known iterative
optimization method. By default, the algorithm is initialized
with all 189 exchangeabilities equal to one, with the option
to specify any other initial exchangeabilities. In its current
implementation, other parameters of the profile mixture
can be jointly estimated using IQ-TREE2’s routines. For ex-
ample, one can simultaneously estimate the tree topology,
branch lengths, rates (not necessarily from a discretized
gamma), weights of fixed profiles, and exchangeabilities
(or any subset of this list).

We compare exchangeabilities S and S via their asso-
ciated rate matrices Q and Q" under the uniform profile;
m; = 1/20. Under this transformation Q;; o S;; is a function
of i and j, so the rate matrix entries can be thought of as
exchangeabilities and we refer to them as such. But the
transformation to Q and Q' puts the exchangeabilities
onto a more comparable scale, one that is more closely as-
sociated with their end-use in rate matrices than setting
one entry to 1 as was done in optimization.
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Data Sets

Because of the computational burden associated with the
estimation of the exchangeabilities in the GTRpmix model,
we have analyzed two large concatenated protein “super-
matrix” datasets to estimate “general use” substitution ma-
trices for phylogenetic estimation with profile mixture mod-
els. These can be used with profile mixture models when
sufficient computational resources are not available for
full GTRpmix optimization or the datasets to be analyzed
are too small to allow accurate estimation. The two datasets
used to estimate these matrices are a pan-eukaryotic conca-
tenated supermatrix and a eukaryote-archaea supermatrix:
Pan-Eukaryotic data sets: To estimate the “Eukaryote”
exchangeability matrix we selected a 240-protein data set
with 76,840 sites and 78 taxa as a taxonomically represen-
tative subsample of all eukaryotes in the PhyloFisher data-
base (Tice et al. 2021). Taxa were selected based on their
known membership in a particular higher-level eukaryotic
taxon and their phylogenetic position. Further selection
was done to maximize gene coverage within the original
PhyloFisher data set. As detailed below, to compare two
methods of exchangeability estimation, we also looked at
a smaller subset of the PhyloFisher database consisting of
a 240-protein data set with 77,965 sites 50 taxa.
Eukaryotic-Archaeal data set: To estimate the ex-
changeability matrix for reconstructing relationships be-
tween eukaryotes and Archaea, we used a 54-protein
data set with 14,704 sites and 86 taxa. This data set in-
cludes a subset of the taxa presented in Eme et al. (2023).
For more details on the datasets and their taxonomic
selection, see the Supplement’s section “Data Sets.”

Data Sets for Comparisons

The following data set is used to compare the fit of the
new empirically estimated matrices to be used for recon-
structing relationships between eukaryotes and Archaea
against the LG matrix and the one estimated for
Eukaryotic phylogenetic analysis.

+ a data set of 56 ribosomal proteins (7,112 sites X 86
taxa) described in Eme et al. (2023). To ensure com-
putational tractability taxa were subsampled from
the original 331 taxon dataset to maintain a represen-
tation of Asgard archaea, TACK archaea, and
Euryarchaeota. A tree topology, denoted Ty esti-
mated under LG+C60+G4, is used for comparing dif-
ferent exchangeabilities matrices.

We also used three empirical concatenated super-
matrices to validate the empirical-estimated matrix dis-
cussed above to be used for Eukaryotic phylogenetic ana-
lysis and compare it with the LG matrix. For each data set,
we consider two trees, the correct topology and an artifac-
tual one (product of long-branch attraction artifacts). The
data sets and trees are as follows:

« adata set of the 133-protein data set (24,291 sites X 40
taxa) described in (Brinkmann et al. 2005) to assess the
placement of the Microsporidia in the tree of eukar-
yotes. The correct topology denoted Ty, was originally
recovered with LG+C20+F+G4, (Susko et al. 2018) and
places the Microsporidia branch as sister to Fungi. The
artifactual topology denoted Tya, was recovered with
LG+F+G4 and groups the Microsporidia with the ar-
chaeal outgroup (i.e. branching sister to all other eukar-
yotes) due to an LBA artifact.

« a data set of 146 proteins (35,371 sites X 37 taxa) de-
scribed in Lartillot et al. (2007) to assess the place-
ment of the Nematodes in the animal tree of life.
The correct topology, denoted Ty, was recovered
with LG+C20+F+G4 where Nematodes branch as sis-
ter to arthropods. The artifactual topology denoted
Tna, was recovered with LG+F+G.

« a data set of 146 proteins (35,371 sites X 32 taxa) as-
sembled in Lartillot et al. (2007) to assess the position
of the Platyhelminths in the animal tree of life. The
correct topology denoted Tp, was recovered with
CAT+GTR  places Platyhelminths within  the
Protostomia. The artifactual topology, denoted Tpa,
recovered with LG+F+G4 and places Platyhelminths
within Coelomata and many mixture models (see
Lartillot et al. 2007; Wang et al. 2017; Susko et al. 2018)

Parameter Estimation Performance

To validate our implementation, we simulated 100 MSA:s,
with 10,000 sites and 10 taxa, using Alisim (Ly-Trong et al.
2022). Each alignment was simulated under the following
conditions: LG exchangeabilities; a profile mixture model
with four profiles, we arbitrarily chose the first four profiles
from the C60 model, which turn out to be quite distinct
(supplementary fig. S2, Supplementary Material online);
a 10-taxon tree, depicted in supplementary fig. S1,
Supplementary Material online, obtained from the empir-
ically estimated tree Ty, defined above, after randomly re-
moving taxa; and a discretized gamma distribution G4
(Yang 1994), with a = 0.67, where a was chosen from an
empirical data estimate (obtained after fitting the model
LG+C60+G4 on the tree Ty for the Microsporidia data
set). The arbitrarily chosen weights of the profiles were
0.35, 0.15, 0.25, and 0.25, respectively. For each MSA, we
jointly estimated exchangeabilities, branch lengths, profile
weights, and the rate parameter a. The only parameters
not estimated were the tree topology and the profiles.
We chose the POISSON exchangeability matrix, where all
entries are equal to 1, as the initial values for the exchan-
geabilities to guarantee that the success of optimization
was not due to the starting values being close to the
true values.

Figure 1a shows a histogram of the difference between
true and estimated exchangeability deviation for all en-
tries and for all 100 simulations. Particularly, this plot
shows how most entries were accurately inferred since
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Fig. 1. Plots showing the comparison between true and estimated parameters for all 100 simulations. For the box plots, an horizontal line at zero
represents a perfect estimation of the true parameters. a) Histogram showing the differences between true and estimated exchangeability de-
viation for all entries. b) Box plot showing the sum of absolute differences between the true (LG) and estimated exchangeabilities. c) Box plot
showing the differences between true and estimated weights for the four classes used to simulate the data. d) Box plot showing the differences
between true and estimated branch lengths. Branches are ordered from largest to shortest (the reason why variability decreases from left to

right).

most of the mass is around zero. Supplementary fig. S3,
Supplementary Material online gives separate box plots
for each exchangeability entry and shows that all entries
are adequately estimated.

To investigate the performance of estimation of all ex-
changeabilities jointly, we compute for each estimated ma-
trix S, the sum of absolute differences (SAD) between the
true exchangeability matrix (LG) and S. Figure 1b shows
the box plot of the SAD for all simulations. For reference,
the SAD between the true matrix (LG) and the starting
matrix (POISSON) is ~0.5, which is considerably larger
than that of any estimated matrices. Moreover, the SAD
between the LG matrix, and the mean estimated matrix
is ~0.02 (Fig. 2), suggesting consistency of the exchange-
ability estimation.

Other parameters optimized jointly with exchangeabil-
ities were also accurately estimated including profile
weights (Fig. 1c), branch lengths (Fig. 1d), and the alpha
shape parameters (supplementary fig. S4, Supplementary
Material online).

Over 100 simulations, the median total CPU time used
to estimate all parameters for each simulated dataset is
4,297 s and the median wall-clock is 217 s on an Intel
Xeon E5-2697 with 64 GB RAM when using |Q-TREE2’s
multithreading option on 20 cores.

Estimating Exchangeabilities Improves
Topological Accuracy

In Bafios et al. (2024), it was shown that misspecification of
the exchangeabilities can severely hamper tree estimation.
Specifically, it was shown that, under a “rich” profile mix-
ture model, data simulated under POISSON exchangeabil-
ities and fitted using fixed LG exchangeabilities together
with a profile mixture model that includes an “F-class” (a
profile that is defined from the empirical frequencies of
amino acids from the MSA) performs poorly.

To determine if GTR estimation would address this prob-
lem, we investigated a similar scenario by simulating 100
MSAs of length 10,000 using the POISSON+C10+G4{0.5}
model on a 12-taxon tree shown in supplementary fig. S5,
Supplementary Material online (L). We separately fitted
the profile mixture model C10+F+G4{0.5} using the
POISSON, LG, and GTR exchangeabilities, and two tree
topologies, the correct tree and an artifactual one corre-
sponding to the long-branch attraction (LBA) artifact
(supplementary fig. S5, Supplementary Material online
(R)). For all models, branch lengths and weights of the
profiles were estimated, and for GTR+C10+F+G4{0.5} ex-
changeabilities were also estimated. Table 1 shows, for
each model, the proportion of times the true tree had a
higher log-likelihood than the LBA tree. As expected
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(Bafios et al. 2024), LG+C10+F performs poorly when
compared to the POISSON+C10+F model; GTR+C10+F,
performs much better than LG and is much closer in per-
formance to the POISSON+C10+F model. If more taxa
and sites were considered, the GTR exchangeability
estimates are expected to approach the true POISSON ex-
changeabilities and tree estimation would improve con-
comitantly. Note that if profiles were misspecified, we
would expect heterogeneity in the estimated exchangeabil-
ities that compensate for this even with a very large data set
or more taxa.

Table 1 also shows a similar scenario to the one described
above, with the only difference being that all MSAs are of
length 500 sites. We note that for both the true tree and
the LBA tree, for the MSA’s of length 10,000, the mean
SAD between the true POISSON and the estimated
GTR exchangeabilities is ~0.27, while for the MSAs of
length 500 SAD is ~0.9. Comparing the results from
both MSA’s lengths, we see that the proportions of
correct topological estimates increase much less for the
incorrect LG-based model than for either the POISSON
or GTR-based models. It is also noteworthy that the
POISSON and GTR proportions obtained from the MSAs
of length 500 are comparable despite POISSON requiring
far fewer parameters to be estimated. We strongly suspect
that this is the result of a small sample bias as described in
Wang et al. (2019).

Data Analysis

We then investigated if GTRpmix improves model fit signifi-
cantly compared to the LG matrix for the Microsporidia
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Table 1 Proportion of times the correct tree is preferred over the
artifactual LBA tree for 100 simulated MSAs of length n =500 and
n = 10,000, simulated under the model POISSON+C10+G4{0.5}

Proportion correct

Model n =500 n =10, 000
POISSON+C10+F+G4{0.5} 0.64 0.96
LG+C10+F+G4{0.5} 0.46 0.58
GTR+C10+F+G4{0.5} 0.64 0.83

The only difference between fitted models is the choice of exchangeabilities. For
the model GTR+C10+F+G4{0.5}, exchangeabilities are estimated using our imple-
mentation. McNemar’s test of the equality of proportions yielded a P-value ~0
when comparing the contingency table from trees for models GTR+C10+
F+G4{0.5} and LG+C10+F+G4{0.5} for the MSAs with 10,000 sites.

Table 2 The log-likelihoods, number of free parameters (denoted k,
which also accounts for the 77 branch lengths in the tree), AIC, and BIC
obtained from fitting models MXM+C60+G4, LG+C60+G4, FM+F+G4,
and FM+C60+G4

LH k AIC BIC
MXM+C60+G4 -710,812 326 1,422,276 1,424,916
LG+C60+G4 —716,579 137 1,433,432 1,434,541
FM+F+G4 —727,849 286 1,456,270 1,458,586
FM+C60+G4 —715,659 326 1,431,970 1,434,610

The best values per column are shown in bold. Both exchangeability matrices
MXM and FM were estimated from the data, with the former estimated under
C60 and the latter with the single frequency class (denoted by “+F” in
IQ-TREE2) based on the frequencies of amino acids in the alignment.

data set from Brinkmann et al. (2005). By fixing the tree top-
ology Tys and the profiles of model C60, we jointly estimated
the exchangeabilities of the GTR model, class weights, o
from a discretized G4, and branch lengths. We refer to
the estimated exchangeability matrix in this section as the
Miscrosporidia eXchangeability Matrix (MXM). We com-
pare this model against LG+C60+G4, where class weights,
0, and branch lengths are estimated under fixed tree top-
ology Ty, profiles of model C60, and LG exchangeabilities.
Table 2 shows the log-likelihoods, AIC, and BIC obtained
from models LG+C60+G4 and MXM+C60+G4. Note that
for MXM+C60+G4, 189 additional parameters are being es-
timated compared to LG+C60+G4. Nevertheless, the AIC
and BIC scores suggest a preference for exchangeability es-
timation by a large margin (around 10k AIC and BIC units,
Table 2).

Figure 3 shows a comparison between the entries of the
LG and the MXM matrix. Particularly, we see that many of
the entries in the LG matrix are different than in the MXM
matrix. Note that the SAD between POISSON and MXM
exchangeabilities is ~0.36 and between LG and POISSON
is ~0.5. To provide insight into these differences, we focus
on a particular example. Some exchangeabilities involving
cysteine (C) are increased in MXM compared to LG. This is
likely because in C60 there is a profile (profile 8 as listed in
IQ-TREE2) where cysteine has a frequency of ~0.42 and
both alanine and serine each have a frequency of ~0.18;
these three amino acids account for almost 80% of the
overall amino acid proportion of this profile. By excluding
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Fig. 3. Entry-wise comparison between the MXM matrix, obtained
from fitting a GTR matrix to the Microsporidia data set, and the
LG exchangeabilities. Each dot represents an entry in the exchange-
ability matrix, where the x-coordinate is the entry of the MXM ma-
trix and the y-coordinate is its corresponding LG matrix entry. Each
point is labeled with the two amino acids it represents. All circles
have equal sizes and were chosen to fit the label of the exchangeabil-
ity they represent.

from C60 this and profile 4 (where cysteine has a frequency
of 0.16 and only A, L, S, T, and V have a frequency greater
than 0.05), the mean frequency of cysteine in the 58 re-
maining profiles is ~0.009. Assuming this profile mixture
is closer to reality, even if the exchangeabilities involving
cysteine are non-negligible, a frequency profile with a sub-
stantial probability of cysteine is unlikely. Thus, a small
proportion of sites with a cysteine and some other amino
acid is expected. Because MXM takes frequency profiles
into account it can recognize this. However, when a single
profile is assumed in fitting, as with LG, a small exchange-
ability provides the only way to account for a low
frequency of sites with cysteine and some other amino
acids. A bubble plot of the differences between the
LG and MXM exchangeabilities can be found in
supplementary fig. S6, Supplementary Material online.
For comparison, we also estimated a GTR matrix, de-
noted FM, under a single profile and discretized G4 rates
for the Microsporidia data set. Specifically, for the profile
we used the overall frequencies of amino acids in the data
set. Supplementary fig. S7, Supplementary Material
online(L) depicts a comparison between the FM and
MXM matrices. This figure shows, as expected, how MXM
has higher cysteine exchangeabilities than FM, as was noted
in the MXM to LG comparison. For additional comparison,
the SAD between the FM and LG is ~0.15, while the SAD
between the FM and MXM matrices is ~0.26. This means
that the FM matrix is more similar to the LG matrix than
the MXM matrix. Table 2 shows that the AIC, and BIC scores
of FM+F+G4, LG+C60+G4, and FM+C60+G4 are all worse

than MXM underscoring the importance of fitting multiple
profiles and exchangeabilities jointly. As suggested in Minh
et al. (2021) and Pandey and Braun (2020), different clades
are likely to have different optimal models, and thus one
would expect the model FM+C60+G4 to perform better
than the model LG+C60+G4. While in fact, the FM+C60
+G4 model is favored over LG+C60+G4 according to the
AIC it is not according to the BIC. Because AIC and BIC
were derived assuming full ML estimation of all parameters
but FM+C60+G4 was not estimated in this way, it is not
clear that these are the right criteria for comparison. BIC,
in particular, was derived to approximate Bayes factors for
models and usually assumes that ML estimates are used
in calculating likelihoods (Schwarz 1978).

The total running time for full estimation of the ex-
changeabilities for the MXM model, branch lengths,
C60 class weights, and the shape parameter, a was ~11
hours on 40 cores of an AMD EPYC 7,543 Processor
with 2T of RAM. We investigated whether accurate esti-
mation of exchangeabilities would be possible by fixing
branch lengths and the shape parameter o from Gé4.
Specifically, we estimated the exchangeability matrix, de-
noted MXMFX, by fixing branch lengths and a to the
averages of these parameters obtained from fitting
POISSON+C60+G4 and LG+C60+G4. The total running
time to estimate MXMf* was ~7 hours on the same
computer and the resulting SAD between MXM and
MXMF¥ is 0.017, suggesting the estimates are very similar
(supplementary fig. S7, Supplementary Material online(R)
shows an entry-wise comparison between these two ma-
trices). The log-likelihood obtained after fitting the model
MXMF*+C60+G4 (where branch lengths and a are re-
estimated) is only ~73 likelihood units less than the one
obtained from fitting MXM+C60+G4 with all parameters
estimated simultaneously. This suggests that fixing branch
lengths and a does not greatly affect the estimation of ex-
changeabilities while yielding important computation
time savings.

Empirically Estimated Exchangeability
Matrices

Since the estimation of exchangeabilities is computational-
ly expensive even after fixing branch lengths and rates,
many users will not have the computational resources
to optimize matrices for their datasets of interest.
Alternatively, users may have datasets that are not large
enough to permit accurate exchangeability estimation
(e.g. a single-protein alignment). For these reasons, we
have estimated two exchangeability matrices from large
data sets using the C60+G4 model that can be used as
fixed matrices for phylogenetic analyses under profile mix-
ture models. The first matrix we introduce is tailored for
phylogenetic analyses of proteins encoded by eukaryotic
nuclear genes and the other is for reconstructing relation-
ships between nuclear-encoded proteins in eukaryotes and
orthologs in Archaea.
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Microsporidia Nematode Platyhelminths
Model  Exchangeabilities LH True Tree D(Ty) LH True Tree D(Ty) LH True Tree D(Tp)
C60 ELM -711,621 18 -708,483 67 -623,353 29
Cc60 MXM -710,812 20 -708,591 69 -623,474 29
C60 LG -716,579 20 -713,138 27 -627,241 -2
C40 ELM -712,344 14 -709,113 70 -623,977 28
C40 MXM -711,523 17 -709,160 72 -624,037 29
C40 LG -717,555 9 -713,882 30 -627,977 -5
C30 ELM -713,459 13 -709,887 69 -624,590 24
C30 MXM -712,644 18 -709,951 72 -624,647 26
C30 LG -718,543 14 -714,557 33 -628,480 -5
C20 ELM -714,950 16 -711,015 59 -625,529 19
C20 MXM -714,097 23 -711,060 62 -625,573 21
C20 LG -719,775 19 -715,659 23 -629,394 -8
UDM64 ELM -711,543 14 -708,858 93 -623,871 34
UDM64 MXM -711,046 14 -709,126 96 -624,104 37
UDM64 LG -714,152 13 -711,237 66 -625,839 18
UDM32 ELM -713,453 5 -710,500 78 -625,148 17
UDM32 MXM -712,861 -710,789 80 -625,414 19
UDM32 LG -716,252 2 -713,059 45 -627,333 -2

Fig. 4. The log-likelihoods of the trees estimated from the three empirical data sets and the difference between fitting the true and the artifactual
tree for each data set. The bar scale goes from the lower value per column (empty) to the highest value (full) per column. D(Tx) denotes the
log-likelihood of the “correct tree” (e.g. Ty) minus the “incorrect” tree (e.g. Tma). Positive values of D(Tx) reflect a preference for the true tree,
while negative preference for the LBA tree. The best LH score per model and data set is shown in bold. In the first column, the MXM matrix is the
GTR matrix for the data set represented in the column (Microsporidia dataset), showing that the ELM matrix gives similar log-likehoods to the

GTR exchangeability rates.

The ELM Exchangeability Matrix for Eukaryotic
Analyses

We estimated an exchangeability matrix, which we refer to as
the Eukaryotic Linked Mixture (ELM) matrix. This matrix was
estimated from the 78-taxon Pan-Eukaryotic data set de-
scribed in the section “Data Sets” above. We used the profiles
from model C60, discretized G4 rates, and a tree topology re-
covered by fitting LG+C60+G4 to the data depicted in
supplementary fig. S10, Supplementary Material online. To
reduce computational time, we used the approach described
for MXMF estimation above; i.e. we fixed branch lengths and
o.to their averages based on estimates from LG+C60+G4 and
POISSON+C60+G4. Thus for the ELM matrix estimation, we
only optimized exchangeabilities and C60 profile weights
jointly.

Supplementary fig. S8, Supplementary Material online
shows a bubble plot of the difference between the LG
and ELM exchangeabilities, and supplementary fig. S9,
Supplementary Material online(L) depicts an analog of
Fig. 3 for these two matrices. To compare the fit between
these two matrices, we used the three empirical data sets
(Microsporidia, Nematode, and Platyhelminths) described
in the subsection “Data Sets for Comparisons.” Figure 4
contains, among other things, the likelihoods obtained
from fitting models LG+C60+G4 and ELM+C60+G4 for
the correct and artifactual topologies of each data set.
Note that, by applying the KHns test developed in Susko
(2014) to compare two fixed tree topologies, a likelihood
difference between fitting the true and artifactual tree is
considered significant, with a 5% significance level, if it is
greater than 5.53 for the Microsporidia, 2.99 for the
Nematode, and 1.92 for the Platyhelminths data sets.
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Although the KHns test does not correct for the selection
bias induced by estimation of the artifactual tree from the
data, nevertheless, these thresholds do give some indica-
tion about how large likelihoods might be expected to
be under the null hypothesis. Clearly, the ELM matrix pro-
duces considerably better likelihood scores for all data sets
than the LG matrix. We note that for the Platyhelminths
data set the ELM+C60+G4 significantly prefers the true
tree over the artefactual tree, whereas the LG+C60+G4
matrix does not. For the other two datasets, all models pre-
ferred the true tree, although the LG model consistently
had the weakest preference, Fig. 4.

We also found that even when the ELM matrix was op-
timized using the profiles from C60, it still provided better
fit and improved topological accuracy when fitting differ-
ent sets of profiles. Figure 4 contains the likelihoods for the
three data sets when fitting the profiles in C40, C30, C20,
UDM32, and UDM64 with LG and ELM exchangeabilities.
For all profile mixture models, the ELM matrix provides
better likelihood scores than the LG matrix. We also see
that the ELM matrix always prefers the true tree, which
is not true for the LG matrix under models C20, C40,
and UDM32 for the Platyhelminths data set.

To make a broader comparison, we also looked at the
likelihoods for all the profile mixture models used in the
comparisons above with MXM exchangeabilities, shown
in Fig. 4. As expected, independently of the profiles, for
the Microsporidia data set the MXM matrix produces bet-
ter likelihood scores since this matrix was optimized on
this data set. Nonetheless, for the other two data sets
the ELM matrix produces better likelihood scores.
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Microsporidia Nematode Platyhelminths
Model  Exchangeabilities LH True Tree D(Ty) LH True Tree D(Ty) LH True Tree D(Tp)
No Mixture ELM -746,753 -243 -743,029 -39 -652,364 -102
No Mixture MXM -744,339 -252 -741,438 -28 -651,059 -96
No Mixture LG -731,679 -191 -727,603 -30 -638,829 -100

Fig. 5. Similar to Fig. 4 but for models with a single profile, denoted as F, estimated from the overall frequencies of amino acids in each data set.

Table 3 The log-likelihoods obtained from fitting models LG+C60+G4,
ELM+C60+G4, and EAL+C60+G4 on the for the 56 ribosomal protein
data set and the tree Ty

Model LH

LG+C60+G4 —745,005
ELM+C60+G4 —738,773
EAL+C60+G4 —736,404

The highest log-likelihood value is shown in bold.

To confirm that the choice of branch lengths and a did
not negatively affect the estimation of the ELM matrix, we
also estimated an exchangeability matrix with the C60
+G4 model, referred to as ELM50, on the 50-taxon Pan-
Eukaryotic matrix described in the “Data Sets” section. We
chose this smaller data set to ease some of the computa-
tional burden so that joint exchangeability, profile weight,
branch length, and a estimation could be conducted. The
entry-wise comparison between the ELM and ELM50 matri-
ces in supplementary fig. S9, Supplementary Material
online(R) shows that these two matrices are in general
very similar (the SAD between these matrices is ~0.034).
Supplementary table S1, Supplementary Material online
shows the equivalent of Fig. 4 for the ELM50 matrix. We
note that in all cases the ELM matrix produces better likeli-
hood scores than the ELM50 matrix. We conclude that es-
timating exchangeabilities using fixed branch lengths and o
did not affect negatively the estimation of the ELM matrix.
Using fixed parameters may allow many more taxa to be
used which should improve estimation. However, in cases
where the guide tree and parameters, are far from optimal,
it could lead to poor estimation.

On the other hand, the performance of the ELM matrix
under a single profile model is subpar compared to the LG
matrix (Fig. 5). With a single “F-class” for each data set,
both ELM and MXM perform worse than LG, so it is inad-
visable to use these models as part of a site-homogeneous
model with a single profile. Although LG performs better
than the other matrices for this site-homogeneous setting,
it does considerably worse than these matrices when used
with any of the mixture models in Fig. 4.

The EAL Exchangeability Matrix for Reconstructing
Relationships between Eukaryotes and Archaea

We estimated an exchangeability matrix, which we refer
to as the Eukaryotic and Archeal Linked mixture (EAL)
matrix, from the 86-taxon Eukaryotic-Archaeal data
set described in the section “Data Sets” above. We used

the profiles from model C60, discretized G4 rates, and
the tree topology depicted in supplementary fig. S10.5,
Supplementary Material online, which is assumed to
be the correct one. Similar to how we estimated the
matrix MXM/*, we fixed branch lengths and a to their
average from fitting models LG+C60+G4 and POISSON+
C60+G4.

Supplementary figs. S11 and $12, Supplementary Material
online show a comparison of the EAL, ELM, and LG matrices.
These plots indicate that these matrices are all quite differ-
ent, with the EAL matrix being somewhat more similar to
ELM than to LG. The SAD from ELM and EAL is ~0.19,
whereas the SAD between LG and EAL is ~0.26.

To show this matrix gives a better fit for data sets with
both eukaryotic and archaeal sequences, we used the 56
ribosomal protein data set and the tree Ty described in
the Data Sets section. Table 3 shows the log-likelihood ob-
tained by fitting models LG+C60+G4, ELM+C60+G4, and
EAL+C60+G4 for this data set and tree. It is clear that
EAL produces the best likelihood score by a wide margin.
Note that since all the models have the same number of
parameters, their fit can be directly compared using the
log-likelihood scores (under these conditions, AIC and
BIC will yield identical orderings of relative model fit to
log-likelihood comparisons).

Conclusion

We have shown that estimation of linked exchangeabilities
jointly with profile mixture model weights in the GTRpmix
model framework provides substantially better model fit
for empirical amino acid alignments, and it can improve
topological estimation for especially difficult problems
where widely used empirical exchangeability matrices
like LG fail. The GTRpmix model will be extremely useful
for researchers investigating deep phylogenetic problems
where the use of well-fitting site-heterogeneous models
is especially important to avoid phylogenetic artifacts.
Furthermore, we provide a number of pre-estimated ma-
trices for use with profile mixture models in the analysis
of eukaryotic nucleus-encoded protein data sets (e.g.
MXM, ELM) and eukaryote-archaeal data sets (e.g. EAL).

Matrices ELM and EAL are available to use in the
IQ-TREE2 software version v2.3.1.

Supplementary Material

Supplementary material is available at Molecular Biology
and Evolution online. Additionally, in the Supplementary
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material online, we have included an IQ-TREE2 sample
command line to estimate exchange abilities as it was
done in this work.
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