

1 **A PhyloFisher utility for nucleotide-based**
2 **phylogenomic matrix construction;**
3 ***nucl_matrix_constructor.py***

4
5 Robert E. Jones¹, Erin P. Jones¹, Alexander K. Tice^{1,2}, Matthew W. Brown^{1,2}
6

7 1. Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
8 2. Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
9

10 **# Corresponding Author:** Matthew W. Brown, matthew.brown@msstate.edu
11

12 **ABSTRACT**

13 Phylogenies built from multiple genes have become a common component of evolutionary
14 biology studies. Molecular phylogenomic matrices used to build multi-gene phylogenies can be
15 built from either nucleotide or protein matrices. Nucleotide-based analyses are often more
16 appropriate for addressing phylogenetic questions in evolutionarily shallow timescales (i.e., less
17 than 100 million years) while protein-based analyses are often more appropriate for addressing
18 deep phylogenetic questions. PhyloFisher is a phylogenomic software package written in
19 Python3. The manually curated PhyloFisher database contains 240 protein-coding genes from
20 304 eukaryotic taxa. Here we present *nucl_matrix_constructor.py*, an expansion of the
21 PhyloFisher starting database, and an update to PhyloFisher that maintains DNA sequences. This
22 combination will allow users the ability to easily build nucleotide phylogenomic matrices while
23 retaining the benefits of protein-based pre-processing used to identify contaminants and
24 paralogy.

25
26 **INTRODUCTION**

27 Multi-gene phylogenetics, phylogenomics, has revolutionized the way we understand the
28 evolutionary history of life (Delsuc et al., 2005, Duchêne 2021, Lozano-Fernandez 2022). For
29 deep evolutionary relationships, such as the origin of eukaryotes or the diversification of
30 animals, it is common practice to use protein-based phylogenomic analyses (Burki et al., 2020;
31 Simion et al., 2017). This is because protein sequences are much less prone to homoplasy
32 compared to DNA sequences because of the slower rate of observable evolution and the larger
33 alphabet (20 amino acids compared to 4 nucleotides) (Philippe et al., 2011, Kapli et al., 2023).
34 This makes it helpful to use amino acid sequences rather than DNA sequences for ortholog and
35 paralog determination. However, the usefulness of DNA sequence based phylogenetics for
36 resolving relationships between closely related species is well documented, recent work suggests
37 their utility in deep phylogenetics too (Kapli et al., 2023).

38 PhyloFisher is a Python3 based phylogenomic software package. PhyloFisher includes a
39 manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering
40 known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform
41 diverse analyses required by state-of-the-art phylogenomic investigations (Tice et al., 2021).
42 Previously, only the predicted protein sequences were included in the PhyloFisher software
43 package. We have now expanded the PhyloFisher starting database to include the corresponding
44 nucleotide sequences for the 240 protein coding genes present in the database. This expanded

45 database also comes with an update to PhyloFisher. v1.3.1 that will encourage users to supply
46 nucleotide sequences that correspond to the protein sequences from taxa added to PhyloFisher.
47 This allows users to easily create nucleotide-based matrices to use for phylogenomics analyses.

48 To demonstrate a use case for the tool, we perform phylogenetic analyses of the
49 Saccharomycetaceae clade of budding yeasts using 2 different gene sets as in Tice et al. (2021)
50 but inferred through nucleotide based phylogenomics. The first gene set is made up of the top
51 10% of trees with the highest Relative Tree Confidence Scores from the BUSCO1292 dataset of
52 Shen et al., (2018), as in Tice et al., (2021). These RTC scores were calculated and binned by the
53 PhyloFisher utility, *rtc_binner.py*. The second dataset is made up of the 240 genes in the starting
54 PhyloFisher database.

55

56 METHODS

57 *Implementation*

58 *nucl_matrix_constructor.py* is written entirely in Python3. The utility takes the output of
59 *prep_final_dataset.py*, which contains amino acid sequences for each gene, and a tab separated
60 values file (TSV) with paths to coding sequence (CDS) files as input. The script begins by
61 building BLAST (Camacho et al., 2009) databases using MAKEBLASTDB for each CDS file.
62 TBLASTN (Camacho et al., 2009) is then performed with the CDS as the database and the
63 amino acid sequence for each gene for each taxon as the query. The TBLASTN results are then
64 parsed and the nucleotide sequence, which corresponds to the amino acid sequence query, is
65 collected. The collected nucleotide sequences are then placed into files, one for each gene. The
66 nucleotide sequence files are then aligned using MAFFT (Katoh & Standley, 2013) with the --
67 auto option. The resulting alignments are then trimmed by trimAl (Capella-Gutiérrez et al., 2009)
68 with a gap threshold of 0.80. The trimmed alignments are next concatenated into a supermatrix.
69 Two files, *indices.tsv* and *occupancy.tsv*, are produced. The former contains the gene positions in
70 the super matrix, and the latter contains taxa occupancy for each gene.

71

72 *Operation*

73 The recommended method to install PhyloFisher is simply via a Conda environment. Please see
74 <https://thebrownlab.github.io/phylofisher-pages/getting-started/installation/> for installation
75 instructions. Additionally, if the user prefers, PhyloFisher can be run inside a Docker container.
76 The PhyloFisher Docker container can be obtained at <https://quay.io/biocontainers/phylofisher>.
77 We recommend running *nucl_matrix_constructor.py* in a high-performance computing (HPC)
78 environment. The utility was successfully run with 9 taxa and 158 genes on Rocky Linux v8.8
79 with 40 threads in 0.55 CPU hours. Instructions on how to include nucleotide sequences into
80 existing databases can be found on the PhyloFisher website
81 (<https://thebrownlab.github.io/phylofisher-pages/>).

82

83 USE CASES

84 To demonstrate the application of *nucl_matrix_constructor.py* we performed phylogenetic
85 analyses of the Saccharomycetaceae clade of budding yeasts. We analyzed two datasets. The first
86 gene set is made up of the top 10% RTC scoring trees of the Shen et al. BUSCO1292 dataset.
87 These RTC scores were calculated and binned by the PhyloFisher utility, *rtc_binner.py*. The
88 second dataset is made up of the 240 genes in the starting PhyloFisher database. We built
89 phylogenomic trees from nucleotides sequences of the two data sets. This was accomplished by
90 first running *nucl_matrix_constructor.py* once the *prep_final_dataset* step of the PhyloFisher

91 workflow was reached. The DNA sequence phylogenies were built using IQ-TREE2 v2.2.0.3
92 (Minh et al., 2020) and through RAxML (Stamatakis, 2014) under the model GTR+G+F.
93 Overall the phylogenomic trees are consistent with the results of Shen et al. 2018 and Tice et al.
94 2021. The ML tree built from the top 10% RTC scoring trees of the Shen et al. 2018
95 BUSCO1292 dataset display the same topology as the protein dataset of Tice et al. 2021.
96 However, with nucleotides the MLBS support is higher (100%) compared to protein dataset
97 (93%). Interestingly, the PhyloFisher 208 ortholog dataset built with nucleotides shows a
98 different topology than PhyloFisher 208 ortholog dataset built with proteins. The topology of the
99 ML concatenation-based tree built with nucleotides has the TYV clade (*Tetrapisispora*,
100 *Yueomyces*, and *Vanderwaltozyma*) breaking up the SNKN clade (*Saccharomyces*,
101 *Nakaseomyces*, *Kazachstania*, and *Naumovozyma*), and the SNKN clade forming a paraphyly.
102

103 CONCLUSIONS

104 Here we present a simple but useful utility to construct nucleotide-based phylogenomic matrices.
105 This resource allows users to perform nucleotide-based phylogenomic analyses utilizing the
106 PhyloFisher (Tice et al., 2021) methodology easily. Up to this point, PhyloFisher only allowed
107 for protein-based analyses. Thus, *nucl_matrix_constructor.py* will allow for the expansion of
108 PhyloFisher into sub-fields of phylogenomics where nucleotide-based analyses are more
109 appropriate than protein-based.

110 ACKNOWLEDGEMENTS

111 This work was supported by the United States National Science Foundation (NSF) Division of
112 Environmental Biology (DEB) grant 2100888 (<http://www.nsf.gov>) awarded to MWB.

113 REFERENCES

114 Burki, F., Roger, A. J., Brown, M. W., & Simpson, A. G. B. (2020). The New Tree of
115 Eukaryotes. *Trends in Ecology and Evolution*, 35(1), 43–55.
<https://doi.org/10.1016/j.tree.2019.08.008>

116 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T.
117 L. (2009). BLAST+: Architecture and applications. *BMC Bioinformatics*, 10, 1–9.
<https://doi.org/10.1186/1471-2105-10-421>

118 Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: A tool for
119 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*,
120 25(15), 1972–1973. <https://doi.org/10.1093/bioinformatics/btp348>

121 Delsuc, F., Brinkmann, H., & Philippe, H. (2005). Phylogenomics and the reconstruction of the
122 tree of life. *Nature reviews. Genetics*, 6(5), 361–375. <https://doi.org/10.1038/nrg1603>

123 Duchêne, D. A. (2021). Phylogenomics. *Current Biology*, 31(19), R1177–R1181.
<https://doi.org/10.1016/j.cub.2021.07.039>

124 Kapli, P., Kotari, I., Telford, M. J., Goldman, N., & Yang, Z. (2023). DNA Sequences Are as
125 Useful as Protein Sequences for Inferring Deep Phylogenies. *Systematic Biology*,
126 syad036. <https://doi.org/10.1093/sysbio/syad036>

127 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7:
128 Improvements in performance and usability. *Molecular Biology and Evolution*, 30(4),
129 772–780. <https://doi.org/10.1093/molbev/mst010>

130 Lozano-Fernandez, J. (2022). A Practical Guide to Design and Assess a Phylogenomic Study.
131 *Genome Biology and Evolution*, 14(9), evac129. <https://doi.org/10.1093/gbe/evac129>

137 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Haeseler, A. V.,
138 Lanfear, R., & Teeling, E. (2020). IQ-TREE 2: New Models and Efficient Methods for
139 Phylogenetic Inference in the Genomic Era. *Molecular Biology and Evolution*, 37(5),
140 1530–1534. <https://doi.org/10.1093/molbev/msaa015>

141 Philippe, H., Brinkmann, H., Lavrov, D. V., Littlewood, D. T. J., Manuel, M., Wörheide, G., &
142 Baurain, D. (2011). Resolving Difficult Phylogenetic Questions: Why More Sequences
143 Are Not Enough. *PLoS Biology*, 9(3), e1000602.
<https://doi.org/10.1371/journal.pbio.1000602>

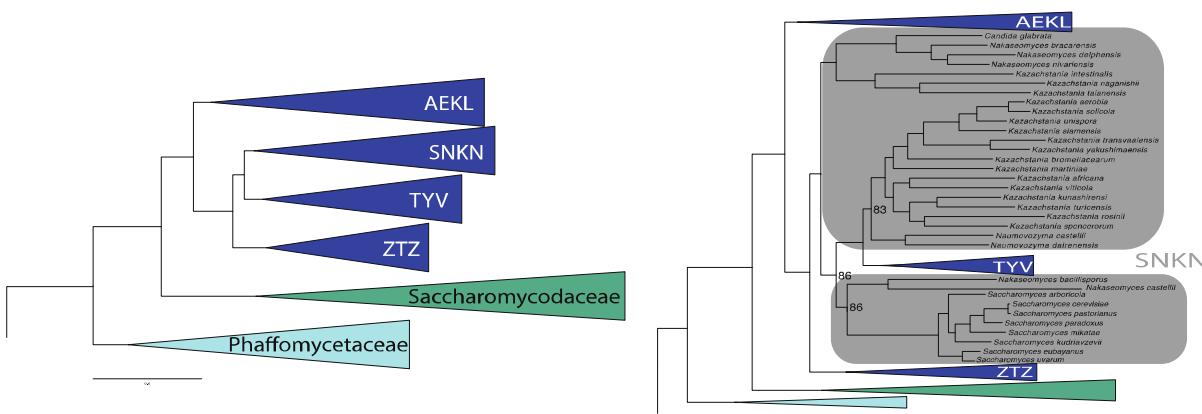
144 Shen, X.-X., Opulente, D. A., Kominek, J., Zhou, X., Steenwyk, J. L., Buh, K. V., Haase, M. A.
145 B., Wisecaver, J. H., Wang, M., Doering, D. T., Boudouris, J. T., Schneider, R. M.,
146 Langdon, Q. K., Ohkuma, M., Endoh, R., Takashima, M., Manabe, R., Čadež, N.,
147 Libkind, D., ... Rokas, A. (2018). Tempo and Mode of Genome Evolution in the Budding
148 Yeast Subphylum. *Cell*, 175(6), 1533–1545.e20.
<https://doi.org/10.1016/j.cell.2018.10.023>

149 Simion, P., Philippe, H., Baurain, D., Jager, M., Richter, D. J., Di Franco, A., Roure, B., Satoh,
150 N., Quéinnec, É., Ereskovsky, A., Lapébie, P., Corre, E., Delsuc, F., King, N., Wörheide,
151 G., & Manuel, M. (2017). A Large and Consistent Phylogenomic Dataset Supports
152 Sponges as the Sister Group to All Other Animals. *Current Biology*, 27(7), 958–967.
<https://doi.org/10.1016/j.cub.2017.02.031>

153 Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of
154 large phylogenies. *Bioinformatics*, 30(9), 1312–1313.
<https://doi.org/10.1093/bioinformatics/btu033>

155 Tice, A. K., Žihala, D., Pánek, T., Jones, R. E., Salomaki, E. D., Nenarokov, S., Burki, F., Eliáš,
156 M., Eme, L., Roger, A. J., Rokas, A., Shen, X. X., Strassert, J. F. H., Kolísko, M., &
157 Brown, M. W. (2021). PhyloFisher: A phylogenomic package for resolving eukaryotic
158 relationships. *PLoS Biology*, 19(8). <https://doi.org/10.1371/journal.pbio.3001365>

159 Wang, H.-C., Minh, B. Q., Susko, E., & Roger, A. J. (2018). Modeling Site Heterogeneity with
160 Posterior Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation.
161 *Systematic Biology*, 67(2), 216–235. <https://doi.org/10.1093/sysbio/syx068>


162

163

164

165

166

167
168 **Figure 1: Phylogenetic reconstruction of the tree of Saccharomycetaceae using DNA**
169 **sequences.** Maximum likelihood trees were built using IQ-TREE2 v2.2.0.3 (Minh et al., 2020)
170 under the model GTR+G+F utilizing a DNA sequence matrices from two datasets. The first gene
171 dataset, shown on the left, is made up of the top 10% RTC scoring trees of the Shen et al., (2018)

172 BUSCO1292 dataset as presented in Tice et al. (2021). These RTC scores were calculated and
173 binned by the PhyloFisher utility, *rtc_binner.py*. The second dataset, shown on the right, is made
174 up of the 240 genes in the starting PhyloFisher database. Sub-clades that make up the
175 Saccharomycetaceae are shown in dark blue which are comprised of AEKL (*Ashbya*,
176 *Eremothecium*, *Kluyveromyces*, and *Lachancea*), SNKN (*Saccharomyces*, *Nakaseomyces*,
177 *Kazachstania*, and *Naumovozyma*), TYV (*Tetrapisispora*, *Yueomyces*, and *Vanderwaltozyma*),
178 and ZTZ (*Zygosaccharomyces*, *Torulaspora*, and *Zygotorulaspora*) clades, while the outgroup
179 clades of the Saccharomycodaceae and the Phaffomycetaceae are shown in dark green and cyan,
180 respectively.
181