

1 Amoebozoan testate amoebae illuminate the diversity of heterotrophs and the 2 complexity of ecosystems throughout geological time

3
4 Alfredo L. Porfirio-Sousa^{1,2*}, Alexander K. Tice^{2,3*}, Luana Morais^{4,5}, Giulia M. Ribeiro¹,
5 Quentin Blandenier², Kenneth Dumack⁶, Yana Eglit^{7,8,9}, Nicholas W. Fry², Maria Beatriz
6 Gomes E Souza¹, Tristan C. Henderson², Felicity Kleitz-Singleton², David Singer¹⁰, Matthew
7 W. Brown^{2,11**}, Daniel J. G. Lahr^{1**}

8
9 ¹Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
10 ²Department of Biological Sciences, Mississippi State University, Mississippi State,
11 Mississippi, USA

12 ³Department of Biological Sciences, Texas Tech University, Lubbock 79409, Texas
13 ⁴Department of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences,
14 University of São Paulo, São Paulo, Brazil

15 ⁵Institute of Geosciences, São Paulo State University, Rio Claro, Brazil
16 ⁶Terrestrial Ecology, Institute of Zoology, University of Cologne, Germany

17 ⁷Department of Biology, Dalhousie University, Halifax, NS, Canada
18 ⁸Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada

19 ⁹Department of Biology, University of Victoria, Victoria, BC, Canada
20 ¹⁰Soil Science and Environment Group, Changins, HES-SO University of Applied Sciences
21 and Arts Western Switzerland, Nyon, Switzerland

22 ¹¹Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University,
23 Mississippi State, Mississippi, USA

24 * Contributed equally

25 ** Corresponding authors

26 **Email:** dlahr@ib.usp.br and matthew.brown@msstate.edu

27 **Author Contributions:** Conceptualization, Supervision, Project Administration,
28 Visualization, Methodology, Writing – Original Draft, A.L.P.-S, A.K.T., M.W.B., and D.J.G.L.;
29 Funding Acquisition and Resources, D.J.G.L. and M.W.B.; Sampling and Culture
30 Maintenance, A.L.P.-S, A.K.T., Q.B., K.D., Y.E., M.B.G.S, T.H., F.K.-S, M.W.B., and D.J.G.L;
31 Data Generation, A.L.P.-S, A.K.T.; L.M.; G.M.R., Q.B., K.D., N.F., T.H., D.S., M.W.B., and
32 D.J.G.L.; Phylogenetic Matrices Construction, A.L.P.-S, A.K.T., Q.B., N.F., T.H.; F.K.-S,
33 M.W.B., and D.J.G.L.; Formal Analysis and Investigation, A.L.P.-S, A.K.T.; L.M.; M.W.B.,
34 and D.J.G.L.; Review Editing, all authors.

35 **Competing Interest Statement:** The authors declare no competing interest.

36 **Deposited as a preprint:** bioRxiv, CC BY

37 **Classification:** Biological Sciences, Evolution

38 **Keywords:** Arcellinida; vase-shaped microfossils; phylogenomics; ancestral state
39 reconstruction; Arcellinida classification; eukaryotic evolution;

40 Abstract

41 Heterotrophic protists are vital in Earth's ecosystems, influencing carbon and nutrient
42 cycles and occupying key positions in food webs as microbial predators. Fossils and
43 molecular data suggest the emergence of predatory microeukaryotes and the
44 transition to a eukaryote-rich marine environment by 800 million years ago (Ma).
45 Neoproterozoic vase-shaped microfossils (VSMs) linked to Arcellinida testate
46 amoebae represent the oldest evidence of heterotrophic microeukaryotes. This study
47 explores the phylogenetic relationship and divergence times of modern Arcellinida
48 and related taxa using a relaxed molecular clock approach. We estimate the origin of
49 nodes leading to extant members of the Arcellinida Order to have happened during
50 the latest Mesoproterozoic and Neoproterozoic (1054 - 661 Ma), while the
51 divergence of extant infraorders postdates the Silurian. Our results demonstrate that
52 at least one major heterotrophic eukaryote lineage originated during the
53 Neoproterozoic. A putative radiation of eukaryotic groups (e.g. Arcellinida) during the
54 early-Neoproterozoic sustained by favorable ecological and environmental conditions
55 may have contributed to eukaryotic life endurance during the Cryogenian severe ice
56 ages. Moreover, we infer that Arcellinida most likely already inhabited terrestrial
57 habitats during the Neoproterozoic, coexisting with terrestrial Fungi and green algae,
58 before land plant radiation. The most recent extant Arcellinida groups diverged
59 during the Silurian Period, alongside other taxa within Fungi and flowering plants.
60 These findings shed light on heterotrophic microeukaryotes' evolutionary history and
61 ecological significance in Earth's ecosystems, using testate amoebae as a proxy.

62

63 Significance Statement

64 Arcellinida shelled amoebae are heterotrophic microbial eukaryotes with an
65 extensive Neoproterozoic fossil record represented by the vase-shaped microfossils
66 (VSMs), a diverse group that is abundant and widespread in late Tonian rocks
67 (VSMs). Here we combined phylogenomic sampling and the fossil record to generate
68 time-calibrated trees. Our results illuminate key events in the history of life, including:
69 i) the Tonian origin of extant microbial eukaryote lineages; ii) a speculative proposed
70 radiation of eukaryotes before the Cryogenian, "Tonian revolution"; iii) the
71 establishment of complex terrestrial habitats before the Cryogenian; iv) a post-

72 Silurian divergence of modern Arcellinida sub-clades in terrestrial (including
73 freshwater) habitats. Our results provide valuable insights into the evolution of life
74 throughout geological time and are congruent with recent discoveries regarding the
75 early diversification of eukaryotes, including the Precambrian history of eukaryotic
76 protosteroids.

77

78 **Introduction**

79 Heterotrophic microbial eukaryotes play a crucial ecosystem role by contributing to
80 the carbon and nutrient cycles (1, 2). These organisms, capable of phagocytosis, act
81 as predators on bacterial and eukaryotic communities, playing a significant role in
82 complex food webs supported by primary producers (1). Additionally, predation is an
83 evolutionary innovation that likely contributed to the diversification of eukaryotes (3).
84 The Last Eukaryotic Common Ancestor (LECA) was heterotrophic and capable of
85 phagocytosis. However, the timing and specific conditions under which diverse
86 lineages of heterotrophic microeukaryotes have proliferated in Earth's ecosystems
87 remain unclear (4-6).

88 Evidence from fossils, biomarkers, geochemical proxies, genomic data, and
89 molecular clocks indicate that eukaryotes first originated during the Stenian (1200-
90 1000 Ma) and Tonian periods (1000-720 Ma) (7-11). This led to a transition from a
91 prokaryotic- to a eukaryotic-rich marine environment (6, 12-14), by 800 Ma, likely
92 triggered by increased phosphorus, nitrate, and silica availability (14-17). From
93 around this time, Neoproterozoic vase-shaped microfossils (VSMs) represent the
94 remnants of an early eukaryotic divergence event. Organisms represented by VSMs
95 are generally thought to have lived in marine environments, although a terrestrial
96 habitat for these organisms is also plausible (18-20). The well-preserved nature of
97 VSMs has allowed for detailed investigation and comparisons of their morphology to
98 modern eukaryotic groups. These investigations support the current interpretation of
99 a large fraction of VSMs being members of the stem or crown groups of testate
100 amoeba order Arcellinida, due to both morphological affinities and congruence with
101 molecular phylogenetic reconstructions (19, 21, 22). Other VSMs, such as
102 *Melicerion poikilon*, had suggested affinities to Euglyphida, a distantly-related,
103 convergent rhizarian clade of testate amoebae (18, 19). However, morphological
104 evidence, in this case, is tentative, and the suggestion for a Euglyphida affinity is
105 currently incongruent with molecular phylogenetic reconstructions, as Euglyphida is

106 part of a clade of cercozoan filose amoebae, which appears to be much younger,
107 around 292 Ma (23). Arcellinida is a diverse lineage of extant heterotrophic
108 microeukaryotes within the Amoebozoa, found in terrestrial and freshwater
109 environments (19-22). Since many VSMs have been recognized as Arcellinida, they
110 are accepted to represent the oldest and most diverse fossil evidence of
111 heterotrophic microeukaryotes (19-20, 24,25). Elucidating the origin and evolutionary
112 history of Arcellinida (and derived lineages) in light of their microfossil record is
113 pivotal to illuminate the early evolution and possible radiation of heterotrophic
114 microbial eukaryotes, and serve as a proxy to infer the complexity of Earth's
115 ecosystems over geological time (19-20, 25, 26).

116 Recent efforts of sampling diverse amoebozoan testate amoebae in a
117 phylogenomic framework have resolved their deep phylogenetic relationships (21,
118 27). Amoebozoa is home to at least two testate amoebae groups: Arcellinida and
119 Corycidia. Arcellinida is a diverse order represented by lineages that build hard
120 extracellular shells, with the potential to generate exceptionally preserved fossilized
121 remains (19, 21). Corycidia is a recently established subclade of Amoebozoa
122 represented by the lineages of testate amoebae that produce flexible shells and do
123 not branch within Arcellinida (27). Despite recent advances, many lineages still
124 remain unsampled (21).

125 In addition to expanding the diversity of sampled Arcellinida at the genome
126 level, the potential of a highly resolved phylogeny to provide insight into timing the
127 Arcellinida origin and divergence of sub-clades has not been explored (22, 25).
128 VSMs can be interpreted either as stem or crown Arcellinida. In either case, these
129 fossils can be used to calibrate a phylogenetic tree and estimate the divergence time
130 of lineages both within Arcellinida, as well as closely related amoebozoans. These
131 diverse VSMs found in sedimentary deposits around the world have been
132 continuously investigated, and their stratigraphy refined over time, enabling us to
133 constrain these fossils' ages (19-20, 28-36). In this context, combining the VSMs and
134 phylogenetic tree calibration opens up avenues to time the evolution of Arcellinida
135 and closely related groups.

136 Here, we investigate the origin and divergence times of Arcellinida and closely
137 related amoebozoan taxa using phylogenomics and a relaxed molecular clock
138 approach. We expanded the taxonomic sampling for amoebozoan testate amoebae,
139 including 14 taxa that lacked precise placement, to produce a new phylogenomic

140 dataset (utilizing 226 genes). We considered the diverse record of VSMs and
141 Metazoa fossils to time calibrate this well-resolved deep phylogenomic tree. Different
142 calibration strategies and molecular clock models support the divergence of extant
143 Arcellinida lineages during the latest Mesoproterozoic and early to mid-
144 Neoproterozoic, between 1060 and 661 Ma. We thus corroborate the origin of a
145 major eukaryotic group by the Neoproterozoic, including a recorded establishment of
146 heterotrophy predating the Cryogenian Period. Overall, using amoebozoan testate
147 amoebae as a proxy, we provide insights into the evolution of microbial eukaryotes
148 and Earth's early ecosystems.

149

150 **Results**

151

152 ***A resolved tree of amoebozoan testate amoebae***

153 We constructed a concatenated supermatrix using 57 taxa and 226 genes (70,428
154 amino acid sites) using the PhyloFisher v. 1.2.11 package (37, 38). We include novel
155 data for 14 testate amoebae taxa, obtained through single-cell or whole-culture
156 transcriptomics (**Fig. 1; Dataset S01, Tables S1 - S4**). The remaining testate
157 amoebae and sister-group taxa were sampled based on previously available
158 genomes and transcriptomes (**Dataset S01, Table S1**). The resulting phylogenomic
159 tree recovers a monophyletic Arcellinida, with three well-defined suborders
160 (Phryganellina, Organoconcha, and Glutinoconcha) and five infraorders within
161 Glutinoconcha (**Fig. 2; Appendix S01, Figs. S1 and S2**). The Corycidia clade is
162 also recovered with full support, with two families, Trichosidae and Amphizonelliidae
163 fam. nov. (**Fig. 2**). Nearly all nodes of the tree are fully (=100%) or highly (>92%)
164 supported by Maximum Likelihood nonparametric Real Bootstraps (MLRB), except
165 for a single node within Sphaerothecina clade that has lower support (MLRB = 76%;
166 **Fig. 2**). We have also produced single-gene reconstructions using SSU rDNA and
167 Cytochrome Oxidase subunit I (COI) (**Dataset S01, Tables S5-S6**), which are the
168 genes traditionally used to reconstruct relationships in Arcellinida. These analyses
169 present broader taxon sampling but failed to recover most of the deeper
170 relationships in Arcellinida (**Appendix S01, Figs. S3-S4**)

171

172 ***Time-calibrated tree of amoebozoan testate amoebae***

173 For estimating divergence times in testate amoebae evolution and closely related
174 taxa, we expanded our phylogenomic supermatrix to consider a representative
175 sampling of Amorphea, including Amoebozoa, Fungi, Metazoa, and their protistan
176 relatives (**Dataset S01, Table S7**). For a comprehensive approach, taking into
177 account the alternative interpretations of the VSM record, we implemented four
178 different calibration strategies: i. calibration of nodes within Metazoa, excluding the
179 VSM record to calibrate amoebozoan nodes; ii. calibration of nodes within Metazoa
180 and calibration of Glutinoconcha+Organoconcha and Glutinoconcha nodes,
181 considering VSMs as derived crown Arcellinida; iii. calibration of nodes within
182 Metazoa and calibration of the Arcellinida node, considering VSMs as basal crown
183 Arcellinida; iv. calibration of nodes within Metazoa and calibration of
184 Arcellinida+Euamoebida node, considering VSMs as stem Arcellinida (**Dataset S01**,
185 **Table S8 - S10**). To implement these four fossil calibration strategies, we performed
186 a total of 36 experiments considering three different distributions (i.e., Uniform,
187 Skew-Normal, or Truncated-Cauchy short-tail) under an uncorrelated or
188 autocorrelated relaxed clock model with either a drift parameter of $\alpha = 2$ and $\beta = 2$ or
189 $\alpha = 1$ and $\beta = 10$. We ran each experiment in two independent MCMC chains to
190 check for convergence, which was achieved for all analyses (**Appendix S01, Fig.**
191 **S5**).

192 Comparing all the calibration strategies and experiments, we observed overall
193 similar inferred times with the uncorrelated clock model (median = 591 - 531 Ma and
194 mean = 627 - 549 Ma; **Dataset S01, Table S11 and Appendix S01, Figs. S6 - S43**)
195 and the autocorrelated clock model (median = 592 - 531 Ma and mean = 671 - 557
196 Ma; **Dataset S01, Table S11**). Regarding implemented distributions, overall the
197 uniform distribution inferred the youngest ages, while Truncated-Cauchy inferred
198 slightly older ages (**Dataset S01, Table S11**). The drift parameter (i.e., $\alpha = 2$ and $\beta =$
199 2 vs. $\alpha = 1$ and $\beta = 10$) had virtually no impact independent of the clock model,
200 distribution, and calibration strategy (**Dataset S01, Table S11**). The estimated times
201 for the Arcellinida node by excluding VSMs from the calibration (mean = 911 - 734
202 Ma; 95% highest probability density confidence interval (HPD CI) = 1060 - 605) and
203 by including VSMs in the calibration (mean = 930 - 746 Ma; 95% HPD CI = 1054 -
204 661 Ma) are highly congruent. This agrees with the current interpretation that VSMs
205 represent fossil remains of Arcellinida, supporting their use to calibrate amoebozoan
206 nodes. Aiming for a comprehensive approach, the time estimation results shown and

207 discussed hereafter focus on the full range of times estimated based on the
208 calibration strategies that included the VSMs, the three distributions, and the drift
209 parameter of $\alpha = 2$ and $\beta = 2$ under the uncorrelated or autocorrelated relaxed clock
210 model.

211 The molecular clock analyses inferred a mean time for the root of Amorphea
212 to be between 1640 and 1393 Ma (95% HPD CI = 1843 - 1088 Ma; **Fig. 3, Dataset**
213 **S01, Table S11, and Appendix S01, Fig. S7 - S43**). For Metazoa, the mean time
214 estimated ranged between 835 and 734 Ma (95% HPD CI = 872 - 673 Ma; **Fig. 3,**
215 **Dataset S01, Table S11, and Appendix S01, Fig. S7 - S43**). The mean estimated
216 for the origin of Amoebozoa ranged from 1607 - 1298 Ma (95% HPD CI = 1795 -
217 1045 Ma; **Fig. 3, Dataset S01, Table S11, and Appendix S01, Fig. S7 - S43**). The
218 Arcellinida node is constrained within the mean 930 and 746 Ma (95% HPD CI =
219 1054 - 661 Ma; **Fig. 3, Dataset S01, Table S11, and Appendix S01, Fig. S7 - S43**),
220 estimating an origin for Arcellinida during the latest Mesoproterozoic and
221 Neoproterozoic (**Fig. 4A**). For the early divergence time of Arcellinida subclades, the
222 estimated times suggest that the split between the Organoconcha and
223 Glutinoconcha branches occurred during the Neoproterozoic (mean = 855 - 679 Ma;
224 95% HPD CI = 969 - 600 Ma; **Figs. 3 - 4B**). Regarding the suborders of Arcellinida,
225 we inferred a mean origin for Phryganellida between 534 - 265 Ma (95% HPD CI =
226 661 - 175 Ma; **Figs. 3 - 4C**), for Organoconcha 735 - 550 Ma (95% HPD CI = 839 -
227 463 Ma; **Figs. 3 - 4D**), and for Glutinoconcha between 790 - 621 Ma (95% HPD CI =
228 897 - 539 Ma; **Figs. 3 - 4E**). For the deeper nodes of Glutinoconcha, the most
229 sampled suborder of Arcellinida, the estimated divergence times ranged between
230 Cryogenian and Carboniferous (mean = 643 - 393 Ma; 95% HPD CI = 705 - 335;
231 **Figs. 3 - 4F - H**). The inferred ages for Glutinoconcha infraorders are relatively more
232 widespread depending on the calibration strategy when compared to other nodes.
233 Treating VSMs as derived crown taxa constrains the infraorders origin between
234 Ediacaran and early Cretaceous (mean = 422 - 221 Ma; 95% HPD CI = 575 - 123
235 Ma; **Figs. 3 - 4I - M**) while considering VSMs as basal crown or stem Arcellinida
236 estimate their origin mostly between Silurian and early Cretaceous (mean = 339 -
237 172 Ma; 95% HPD CI = 444 - 122 Ma; **Figs. 3 - 4I - M**). It is worth noting that only
238 the calibration using a uniform autocorrelated clock model and VSMs as derived
239 crown arcellinids inferred ages as old as the Ediacaran for the Glutinoconcha
240 infraorders. All other distribution-clock models consistently led to ages constrained

241 within the Paleozoic. Most inferred ages for the nodes representing the origin of the
242 modern extant genera and species of Arcellinida postdate the Silurian (mean = 416 -
243 125 Ma; **Dataset S01, Table S11**). Besides the testate amoebae, the inferred mean
244 times for the other orders and major groups of Amoebozoa we sampled ranged from
245 585 Ma to 1288 Ma, placing their origin mostly during the Neoproterozoic (**Dataset**
246 **S01, Table S11**). The results and time-calibrated trees for all experiments are
247 present in the supplemental material (**Dataset S01, Table S11 and Appendix S01,**
248 **Fig. S6 - S43**).

249

250 **Ancestral habitat reconstruction of Arcellinida**

251 We performed statistical analyses on the ancestral habitat of key hypothetical
252 ancestors within Arcellinida considering alternative scenarios of a terrestrial or
253 marine origin for the crown group (**Dataset S01, Table S12 and Appendix S01, Fig.**
254 **S44**). The unrestrained reconstruction inferred a terrestrial habitat (100% probability)
255 for all nodes within Arcellinida. The ancestral reconstruction that sets the fixed value
256 of a marine state on the last common ancestor of modern Arcellinida inferred a high
257 probability of terrestrial habitat for all nodes within Arcellinida (>93%), implying at
258 least two independent transition events (2TE) from marine to terrestrial habitats (**Fig.**
259 **5**). The ancestral reconstruction that sets the fixed value of a marine state on the last
260 common ancestor of both the Arcellinida and the Organoconcha+Glutinoconcha
261 clades inferred with high probability (>88%) a terrestrial habitat for the hypothetical
262 ancestors of Phryganellina, Organoconcha, and Glutinoconcha, implying at least
263 three independent transition events (3TE) from marine to terrestrial habitats (**Fig. 5**).

264

265 **Discussion**

266

267 ***A resolved tree of amoebozoan testate amoebae***

268 The phylogenomic dataset constructed in this study improves several aspects of the
269 previously available amoebozoan testate amoebae dataset (21, 27). Through the
270 PhyloFisher pipeline, we were able to construct a curated phylogenomic matrix that
271 is free of paralogs and contamination (**Appendix S01, SI1**). Moreover, the matrix
272 constructed is an accessible and easy-to-update dataset, since newly sequenced
273 transcriptomes can be easily added through PhyloFisher to further expand the
274 taxonomic sampling of amoebozoan testate amoebae in a phylogenomic approach.

275 In general terms, the phylogenomic tree obtained here is consistent with the
276 previously published phylogenomic tree for amoebozoan testate amoebae (**Fig. 2**;
277 21, 27). By recovering all major groups of the Arcellinida and Corycidia clades with
278 full support, in accordance with previous reconstructions, we corroborate the
279 robustness of the backbone of the amoebozoan testate amoebae tree. The
280 phylogenomic analyses enable us to place previously unsampled taxa within
281 Arcellinida suborders, supporting the taxonomic actions regarding *Heleopera lucida*
282 comb. nov. and the genus *Microcorycia* (**Appendix S01, SI2 - SI3**). Moreover, the
283 phylogenomic tree identifies taxa that will need future taxonomic revision based on
284 further morphological and molecular studies, those being *Diffugia* cf. *capreolata* and
285 the genera *Cyclopyxis* and *Phryganella*. Detailed discussion on the placement of
286 newly sequenced amoebozoan testate amoebae is presented in **Appendix S01, SI2**
287 - **SI3**.

288

289 **Robust Amorphea time-calibrated trees using VSMs**

290 Our time-calibrated trees are congruent with several molecular clocks that have
291 sampled the diversity of eukaryotes (**Fig. 3, Dataset S01, Table S11, and Appendix**
292 **S01, Fig. S6 - S43**). The estimated ages for the root of our tree fall within the range
293 inferred by a recent molecular timescale for eukaryotes (95% confidence interval =
294 2177 - 1356 Ma for Amorphea; 39). Similarly, the estimated ages for the origin of
295 other major clades align with previous studies, including Obazoa (95% HPD CI =
296 2305 - 1526 Ma), opisthokonts (95% HPD CI = 2019 - 1051 Ma), and animals (95%
297 HPD CI = 833 - 680 Ma) (39-42). The inferred times place the origin of Arcellinida
298 during the latest Mesoproterozoic and early to mid-Neoproterozoic, most likely during
299 the Tonian Period and no later than the Cryogenian (**Fig. 4, Dataset S01, Table**
300 **S11, and Appendix S01, Fig. S6 - S43**). It is worth noting that by considering
301 different calibration strategies to account for alternative plausible interpretations of
302 VSMs and the unavoidable fossil record uncertainties, the times we estimated for
303 each node have wide ranges. However, independently of the calibration strategy,
304 distribution, and clock model, the Arcellinida origin is mostly placed within the
305 Neoproterozoic, and all estimated mean times suggest a Tonian origin. Notably, the
306 time-calibrated trees we generated without using the VSMs as calibration data
307 inferred times congruent with our analyses considering the Tonian VSMs. This
308 demonstrates that inferred ages are not a fossil calibration bias and serves as further

309 corroboration for the interpretation of VSMs as fossil members of, at the very least,
310 the stem Arcellinida group (**Fig. 4, Dataset S01, Table S11**). Also, the ages we
311 inferred for the origin of modern groups (i.e., genera) are highly congruent with the
312 recent Arcellinida fossil record which postdates the Carboniferous Period and
313 preserves fossils assigned to genera like *Arcella*, *Diffugia*, and *Centropyxis* (**Dataset**
314 **S01, Table S11**; 43-45). Collectively, the consistency of the estimated times, and
315 their congruence with previous molecular clocks and with the fossil record, support
316 that including VSMs to calibrate a comprehensive phylogenomic sampling of
317 Amorphea leads to robust results.

318

319 **The Neoproterozoic diversification of heterotrophic microbial eukaryotes**

320 Our time-calibrated trees reveal that Arcellinida originated most likely during the
321 Neoproterozoic, with most inferred times and all of the means falling within the
322 Tonian Period (**Fig. 4 A - B**). The mean estimated times for other major groups of
323 Amoebozoa also indicate a Tonian origin. Similarly, previous molecular clock
324 analyses have indicated the divergence of multiple heterotrophic eukaryotes during
325 this period (40, 41). However, their diversity has been challenging to examine due to
326 the lack of a fossil record for these organisms. Nevertheless, the estimated
327 Neoproterozoic origin for the Arcellinida crown group and the diversity of Tonian
328 VSMs, currently represented by 14 morphologically diverse genera (19-20, 25, 31),
329 suggest that by the Tonian Period, Earth's ecosystems had witnessed the origin of
330 modern heterotrophic microbial eukaryotes.

331 An inferred Tonian origin for diverse heterotrophic microbial eukaryotes is
332 congruent with proposals of ecosystem establishment during the Neoproterozoic,
333 stemming from various disciplines. Previous studies speculate the existence of a
334 “Tonian revolution”, based on evidence from biomarkers, fossil records, and
335 molecular data that infer a marked transition from prokaryotic- to eukaryotic-rich
336 ecosystems by 800 Ma (6, 11-14, 46). This transition was likely facilitated by factors
337 such as increased availability of nitrate, phosphorus, silica, and reduced toxicity,
338 which provided a favorable condition linked to the documented diversification of
339 eukaryotic phototrophs at that time (14-17). In turn, the establishment of a
340 community of phototrophs may have served as a favorable condition for the
341 diversification of heterotrophs. Fossil and geochemical evidence suggest that
342 photosynthetic biological mats contributed to the establishment of Oxygen Oases

343 during the Tonian, likely triggered by a higher capacity of oxygen productivity of
344 eukaryotic phototrophs (7, 10, 47, 48). These oases probably represented an
345 increase in aerobic conditions, and food availability, that were permissive to the
346 survival and proliferation of heterotrophs like Arcellinida. Consequently, a combined
347 interpretation of the geochemical and fossil records indicates that complex
348 ecosystems were established by the Neoproterozoic.

349 VSMs serve as a unique testimony of the putative “Tonian revolution” on
350 eukaryotic diversification and ecosystems established during the Neoproterozoic.
351 The VSMs have been found in rocks characterized by organic-rich sediments
352 corroborating the close association of heterotrophic eukaryotes with microbial mats
353 (19). Also, the organisms represented by these VSMs likely preyed on both the
354 bacterial and eukaryotic communities, similar to extant Arcellinida (19, 49, 50).
355 Culture observations have demonstrated diverse strategies of extant Arcellinida to
356 prey on various organisms, including diatoms, fungi, and nematodes (51-54).
357 Moreover, several VSMs exhibit holes on their shells interpreted as predation marks,
358 suggesting they also served as prey to other heterotrophs (3, 55). Predation has
359 been interpreted as one of the triggers for eukaryotic diversification, including for
360 animals, and VSMs are among the oldest records of this evolutionary innovation (3,
361 56-58). Thus, while most of the microbial eukaryotes did not leave fossils, VSMs
362 stand out as a robust fossil record highlighting the rise of predation and increase of
363 food web complexity on Earth’s ecosystems no later than the Tonian Period.

364 Our time-calibrated trees suggest that the divergence of some modern
365 Arcellinida lineages happened during the Neoproterozoic. The inferred times for the
366 split and origin of the Organoconcha and Glutinoconcha suborders mostly fall within
367 the Neoproterozoic between the Tonian and Ediacaran Periods, with only some
368 estimated times suggesting an early-Paleozoic origin for Organoconcha. Specifically,
369 the ages predicted for the Organoconcha and Glutinoconcha split either predate or
370 overlap with the Cryogenian Period and its glaciations. It is worth noting that
371 Phryganellina is currently the least genomically sampled Arcellinida group,
372 represented only by two genera, thus it is difficult to assess when this suborder
373 originated. Altogether, the origin and early divergence of the Arcellinida crown group,
374 and the diverse VSMs record, imply the capability of Neoproterozoic ecosystems not
375 only to sustain heterotrophic eukaryote groups but also to allow their diversification.

376

377 **A possible Pre-Cryogenian Eukaryotic Diversification and Survival during**
378 **Earth's most severe Ice Ages**

379 The Sturtian and Marinoan glaciation periods witnessed extensive ice coverage
380 across the planet, with glaciers extending into tropical regions (59-61). The survival
381 of life during Cryogenian glaciations can be explained by the presence of refugia and
382 the adoption of dormancy strategies (62-69). The presence of cyst-like structures
383 identified inside VSMs serves as direct evidence that these organisms were already
384 capable of entering dormancy stages, similar to extant Arcellinida (70). Additionally,
385 recent discoveries have revealed that Tonian VSM taxa persisted into the
386 Cryogenian Period, providing fossil records that showcase the diversity of
387 heterotrophic eukaryotes during glaciation periods (69). The inferred times for the
388 split and origin of Glutinoconcha and Organoconcha suggest they possibly originated
389 during Cryogenian, indicating not only survival but also divergence of novel modern
390 eukaryotic taxa during Cryogenian glaciations (**Fig. 4 D - E**). Consequently, the VSM
391 record and the timing of early Arcellinida evolution enable speculation about a
392 possible radiation of heterotrophic eukaryotic life shortly before and during the
393 Cryogenian Period. This, coupled with a capacity for dormancy and the exploitation
394 of habitat refugia, may explain the endurance of life during Earth's most severe ice
395 age.

396

397 **Timing of terrestrial conquest by Arcellinida**

398 Currently, while it is largely suggested that the organisms represented by Tonian
399 VSMs lived in shallow marine environments, a terrestrial habitat cannot be ruled out.
400 To date, VSMs have been reported from Tonian sedimentary deposits described as
401 fully or partially marine (18-19, 25). However, although scarcely discussed in the
402 literature, it is plausible to hypothesize that the organisms represented by the VSMs
403 may have lived in terrestrial environments and were deposited in marine sediments
404 through a number of possible mechanisms, including: surface runoff, river discharge,
405 wind blowing, or supratidal spillover. In any case, these organisms ultimately
406 fossilized in a marine setting (71). Consequently, considering the alternative
407 interpretations of VSMs' natural habitat and their affinity to Arcellinida (i.e., stem or
408 crown Arcellinida), different scenarios can be explored regarding Arcellinida's
409 conquest of terrestrial habitat.

410 Our ancestral habitat reconstructions indicate three alternative scenarios, a
411 terrestrial origin for Arcellinida, a marine origin with two independent transition
412 events (2TE) from marine to terrestrial habitats, and a marine origin with three
413 independent transition events (3TE) (**Fig. 5 and Appendix S01, Fig. S44**). Although
414 the reconstruction of a terrestrial origin is statistically superior to the other scenarios
415 (Likelihood Ratio Test - LRT), this was already expected since all extant Arcellinida
416 are terrestrial/freshwater inhabiting, leading to the reconstruction of a terrestrial
417 ancestor (i.e. a possible systemic bias). However, interpreting VSMs as stem or
418 crown Arcellinida and enforcing a marine origin for the Arcellinida stem and early
419 crown groups, 2TE or 3TE are plausible and statistically equivalent based on LRT, in
420 accordance with previous hypotheses (18-21, 25, 72). Multiple transition events are
421 biologically plausible: Arcellinida-related amoebozoan lineages are often represented
422 by both marine and terrestrial species, even within the same genera (e.g., *Vannella*,
423 *Mayorella*, and *Trichamoeba*).

424 Coupling the reconstructed scenarios with the timing of Arcellinida origin and
425 early divergence of its sub-clades, we infer that many Arcellinida probably inhabited
426 terrestrial environments already in the Neoproterozoic, no later than the Ediacaran
427 Period. Even if we consider the latest transition scenario reconstructed (3TE) the
428 inferred times place the terrestrialization event of Glutinoconcha and Organoconcha
429 most likely between the Tonian and Ediacaran periods (**Fig. 5**). The time of
430 diversification of life in terrestrial habitats has been traditionally discussed based on
431 the time of divergence of land plants (embryophytes), which is constrained within a
432 Paleozoic diversification (73, 74). However, recent inferences based on
433 phylogenomic reconstructions and molecular clocks have suggested that modern
434 eukaryotic lineages, like Fungi and green algae, diverged on land no later than
435 Cryogenian (73, 74). Congruently, our estimated times for Arcellinida
436 terrestrialization are constrained within the Neoproterozoic. These findings suggest a
437 Neoproterozoic establishment of relatively complex terrestrial ecosystems inhabited
438 by diverse organisms, including phototrophic (green algae), absorptive heterotrophic
439 (Fungi), and phagotrophic heterotrophic protists.

440 The inferred divergence of Arcellinida sub-clades in terrestrial habitats, well
441 represented by Glutinoconcha (currently the best-sampled suborder), is also
442 congruent to the diversification timing estimated for other eukaryotic groups. The
443 Glutinoconcha infraorders' split is mostly constrained between the late-

444 Neoproterozoic and mid-Paleozoic (Devonian Period). The radiation of Fungi and the
445 diversification of extant land plants are estimated to the same window (ca. 480 Ma)
446 (75). Subsequently, the origin of extant Arcellinida groups, represented by the origin
447 of all Glutinoconcha infraorders, is mostly constrained between the Silurian and
448 Cretaceous. This is contemporaneous with the documented Late Paleozoic
449 diversification of seed plants and saprotrophic mushrooms (75). Similarly, the
450 estimated time for the divergence of Arcellinida genera, mostly post-dating early
451 Mesozoic, is congruent to the radiation of diverse groups of Fungi and land plants,
452 including pine trees (Pinaceae) and flowering plants (Angiosperm) (75). Altogether,
453 congruences between the timing of the origin of various eukaryotic groups suggest
454 an integrated and synchronous diversification of life in terrestrial habitats, enabling
455 speculation about a possible radiation of Arcellinida in this time period. However, this
456 claim requires explicit testing and corroboration via well-sampled studies of
457 background diversification rates using fossils.

458

459 **Conclusions**

460 Timing the origin of modern Arcellinida testate amoebae and the divergence times of
461 their subclades illuminate the evolution of heterotrophic microbial eukaryotes in
462 geological time. To estimate this timing, we expanded the phylogenomic sampling of
463 amoebozoan testate amoebae and generated robust time-calibrated Amorphea trees
464 based on both Arcellinida and Metazoa fossil records. The estimated times for the
465 origin of Arcellinida and other amoebozoans, mostly constrained within the Tonian
466 Period, are congruent with the previously speculated “Tonian revolution” for a
467 diversification of eukaryotes in this Period. This consistency suggests that Earth’s
468 ecosystems had witnessed the divergence of both phototrophic and heterotrophic
469 eukaryotic lineages, including Arcellinida, during the Neoproterozoic, no later than
470 the Tonian Period. A putative radiation of eukaryotes before the Cryogenian Period,
471 coupled with the exploitation of refugia habitats and dormancy strategy, may have
472 contributed to their endurance during Earth’s most severe ice ages. Although the
473 ancestral habitat of Arcellinida and the possibility of transition between environments
474 (marine vs. terrestrial) remain contentious, considering the plausible alternative
475 scenarios we infer that Arcellinida were most likely already inhabiting terrestrial
476 habitats between the Tonian and Ediacaran Periods. Together with the previously
477 suggested diversification of Fungi and green algae on land during the Cryogenian

478 Period, the inferred time for terrestrial Arcellinida is congruent with a Neoproterozoic
479 establishment of relatively complex ecosystems composed of phototrophic (green
480 algae), absorptive heterotrophic (Fungi), and phagotrophic heterotrophic eukaryotes,
481 preceding the diversification of land plants. Similarly, the estimated post-Silurian
482 origin of modern Arcellinida (i.e., infraorders) suggests a contemporaneity to the
483 diversification of other groups, including diverse Fungi and land plants. Ultimately,
484 we suggest the Arcellinida testate amoebae are a key group to further explore the
485 diversification of heterotrophic microbial eukaryotes and the establishment of
486 ecosystems starting in the Neoproterozoic.

487

488 **Material and Methods**

489

490 **Sampling, RNA extraction, and sequencing**

491 We generated transcriptomes for 14 previously genomically unsampled amoebozoan
492 testate amoeba species through mRNA extraction from either monoclonal cultures or
493 single-cells isolated from natural samples (**Dataset S01, Table S1**). We synthesized
494 cDNA from RNA extractions using an adaptation of the Smart-seq2 protocol (77). We
495 prepared our cDNA libraries for sequencing on the Illumina platform using a
496 NexteraXT DNA Library Preparation Kit (Illumina) following the manufacturer's
497 recommended protocol. Libraries were then pooled and sequenced (**Appendix S01,**
498 **SI1; Dataset S01, Table S1**).

499

500 **Trimming, Transcriptome Assembly, and Quality Assessment**

501 We trimmed primers, adaptors, and low-quality bases from raw Illumina reads using
502 Trimmomatic v. 0.36 (77). We then assembled the surviving reads with Trinity v.
503 2.12.0 (78). We predicted amino acid sequences (proteomes) from the assembled
504 transcriptomes using Transdecoder v. 5.5.0. Finally, we assessed the completeness
505 of all newly sequenced transcriptomes using BUSCO v. 5.3.2 (79) (**Dataset S01,**
506 **Table S1**). Further details on trimming, transcriptome assembly, and quality
507 assessment are presented in **Appendix S01, SI1**.

508

509 **Phylogenomic dataset construction**

510 We constructed our amoebozoan phylogenomic dataset using the database and
511 tools available in PhyloFisher v. 1.2.11 (37) following the steps outlined at

512 <https://thebrownlab.github.io/phylofisher-pages/detailed-example-workflow> and in
513 Jones et al. (38). Our final concatenated matrix used in subsequent phylogenetic
514 analyses consisted of 226 genes (70,428 amino acid sites) and 57 amoebozoan taxa
515 (**Dataset S01, Table S4**). From each individual ortholog that was concatenated to
516 create the aforementioned matrix, we constructed single ortholog trees to be used as
517 input for coalescent-based phylogenomic analyses. Further details on our approach
518 for phylogenomic dataset construction are presented in **Appendix S01, SI1**.

519

520 **Phylogenomic analyses**

521 We performed maximum likelihood phylogenetic reconstruction using our final matrix
522 with IQ-TREE2 v. 2.0-rc (80). We initially inferred a tree from our matrix under the
523 LG+C20+G4 model. We used the resulting tree as a guide tree to infer a Posterior
524 Means Site Frequency model (81) using the ML model LG+C60+G4+PMSF in IQ-
525 TREE2. We assessed the topological support for the resulting tree by 100 Real
526 nonparametric Bootstrap replicates in IQ-TREE (IQ-TREE v. 2.1.2 COVID-edition)
527 using the PMSF model. The topological support values inferred from MLRB were
528 mapped onto the ML tree using RAxML v. 8.2.12 (82) using the “-f b” option. We
529 carried out coalescent-based phylogenomic analyses with ASTRAL-III v. 5.7.3 (83).
530 Statistical support for our ASTRAL-III analysis was assessed via local posterior
531 probability values.

532

533 **Bayesian molecular dating**

534 *Dataset and Topology*

535 Utilizing previously identified orthologs already present in the publicly available
536 PhyloFisher database, we expanded our amoebozoan phylogenomic dataset to
537 include a representative sampling of Amorphea. Amorphea is the eukaryotic clade
538 composed of Amoebozoa, Fungi, Animals, and some other unicellular lineages.
539 These ortholog sequences were aligned, trimmed, and concatenated as described
540 above (*Phylogenomic dataset construction section*). Our final expanded dataset
541 used in the subsequent phylogenetic reconstruction and for the molecular dating
542 analysis consisted of 230 genes (73,467 amino acid sites) and 96 taxa (**Dataset**
543 **S01, Table S7**). Maximum likelihood phylogenetic analysis was performed as
544 described above (*Phylogenomic analyses section*).

545

546 *Fossil calibrations*

547 As external calibration information, we considered fossils to calibrate five internal
548 nodes of the Metazoa clade and explored three different strategies to calibrate
549 amoebozoan nodes (**Dataset S01, Tables S8 - S10**). We strictly derived the fossil
550 calibration for Metazoa from dos Reis et al. (42) and Benton et al., (84), which have
551 carefully evaluated the diversity of fossils available and calibration strategies for the
552 Metazoa lineage. We derived the fossil calibration for Arcellinida based on previous
553 analyses and interpretations of the morphological relationship between VSMs and
554 extant Arcellinida (19, 21, 22). Currently, VSM's can be interpreted either as: i) the
555 fossil record of stem Arcellinida; ii) basal crown Arcellinida closely related to
556 Arcellinida common ancestor, or; iii) derived crown Arcellinida (19, 21, 22).
557 Specifically, interpretations of Bayesian and maximum likelihood ancestral
558 reconstructions of Arcellinida shell morphology suggest a morphological congruence
559 between the VSM *Melanocyrillum* to the Glutinoconcha+Organonconcha hypothetical
560 ancestor and between the VSM *Cyliocyrillum* to Glutinoconcha hypothetical
561 ancestor, thus suggesting they may represent derived crown Arcellinida (21).
562 Consequently, three different calibration strategies can be implemented from these
563 alternative interpretations. VSM's can be considered to calibrate: i)
564 Glutinoconcha+Organonconcha and Glutinoconcha nodes; ii) calibrate the Arcellinida
565 node, or; iii) calibrate the node shared between Arcellinida and its closest sister
566 group, the amoebozoan order Euamoebida. Aiming for a comprehensive approach
567 we considered these three strategies and generated comparable time tree
568 estimations. To constrain the VSMs ages, we considered the literature which has
569 described these microfossils and refined their stratigraphical distribution (**Dataset**
570 **S01, Tables S9**; 36). Since molecular dating considers the fossil information as
571 statistical distributions, and different distributions may impact the time estimation
572 differently, we followed dos Reis et al. (42) strategy and used a total of three different
573 distributions to represent the calibrations derived from the fossil record: i. uniform; ii.
574 skew-normal; and iii. truncated-cauchy short-tail. Full details on our approach for
575 fossil calibration are presented in **Appendix S01, SI1**.

576

577 *Divergence time estimation*

578 We performed Bayesian molecular dating with the MCMCTree program,
579 implemented within the PAML package (**Dataset S01, Table S10**; 85). We estimated

580 a mean substitution rate of $0.03135 \text{ replacement site}^{-1} 10^{-8} \text{ Myr}^{-1}$ for our dataset with
581 IQ-TREE2 v. 2.0.6 (80) phylogenetic dating under the LG+G model. Within the PAML
582 package, we set the overall substitution rate ('rgene_gamma = α , β ' parameter) as a
583 gamma-Dirichlet prior following dos Reis et al. (42), with $\alpha = 2$ and $\beta = 63.78$. This
584 substitution rate was implemented for all dating experiments. For the rate drift
585 parameter ('sigma²_gamma = α , β '), we independently implemented two alternatives,
586 $\alpha = 2$ and $\beta = 2$ or $\alpha = 1$ and $\beta = 10$. Similarly, we considered both uncorrelated and
587 autocorrelated relaxed clock models. For all experiments, we analyzed the data
588 under the LG+G model as a single partition, constrained the root age between 1.6 -
589 3.2 Ga, and considered a uniform birth-death tree prior and 100 million years as one
590 time unit. We performed a total of 36 experiments, considering three distributions
591 (i.e., uniform, skew-normal, and truncated-Cauchy short-tail), varying the rate drift
592 parameter (i.e., $\alpha = 2$ and $\beta = 2$ or $\alpha = 1$ and $\beta = 10$) and clock model (i.e.,
593 uncorrelated and autocorrelated). For each experiment, we ran two independent
594 MCMC chains to verify convergence, discarding the first 2,000 iterations as burn-in
595 and considering the following 20 million generations. To check the influence of fossil
596 calibrations using Neoproterozoic VSMs on the estimated dates, we performed
597 experiments calibrating only the nodes within the Animal clade, applying Uniform and
598 Skew-Normal calibration strategies, under an uncorrelated or autocorrelated relaxed
599 clock model with a drift parameter of $\alpha = 2$ and $\beta = 2$ or $\alpha = 1$ and $\beta = 10$, following
600 the same approach described above, as detailed in **Appendix S01, SI1**.

601

602 ***Ancestral reconstruction of Arcellinida habitat***

603 We applied a maximum likelihood (ML) method, implemented in BayesTraits v. 4.0.1
604 (86), to statistically reconstruct the ancestral habitat states of Arcellinida and
605 compare evolutionary scenarios. Currently, the diverse Tonian VSM record has been
606 documented from environments described as fully or partially marine, suggesting the
607 organisms represented by these fossils inhabited marine environments (19, 25).
608 However, we cannot rule out the possibility of a terrestrial habitat for these
609 organisms, since their dead remains could have been transported from terrestrial to
610 marine environments where they fossilized. To explore this issue, we combine the
611 fossil evidence and the phylogenomic reconstruction with branch lengths to
612 reconstruct the potential ancestral habitat states (i.e., marine habitat vs. terrestrial
613 habitat) of key Arcellinida clades through the BayesTraits MultiState method (86).

614 Specifically, we used the 100 topologies with branch lengths obtained for the
615 phylogenomic Real Bootstrap topological support assessment (see *Phylogenomic*
616 *analyses section*) and implemented four different ancestral reconstruction analyses:
617 i. ancestral reconstruction without fossilizing (assigning a fixed ancestral state value)
618 nodes; ii. ancestral reconstruction fossilizing Arcellinida node as terrestrial, which
619 interprets the organisms represented by VSMs as terrestrial; iii. ancestral
620 reconstruction fossilizing Arcellinida node as marine, which interprets the organisms
621 represented by VSMs as marine; iv. ancestral reconstruction fossilizing Arcellinida
622 and Organoconcha+Glutinoconcha nodes as marine, which interprets the organisms
623 represented by VSMs as derived crown Arcellinida that lived in marine habitat
624 (**DatasetS01, Table S12 and Appendix S01, Fig. S44**). To compare the
625 reconstructed scenarios, we applied a likelihood ratio test (LRT), which we
626 considered as significant a difference of $LRT \geq 2$ (87).

627

628 **Data Availability**

629 Raw sequencing files are deposited at the NCBI SRA repository under the Bioproject
630 PRJNA1032600. Phylogenomic supermatrix, single gene marker datasets, and input
631 information for the molecular clock and ancestral reconstruction analyses are
632 presented in DatasetS01. All molecular data associated with this manuscript are
633 available on FigShare (10.6084/m9.figshare.25749276). This includes transcriptome
634 assemblies, predicted proteomes, alignments (trimmed and untrimmed), as well as
635 phylogenetic trees.

636

637 **Acknowledgments**

638 We are deeply indebted to Susannah Porter for providing thoughtful insights to an
639 earlier version of this manuscript, as well as a second anonymous reviewer. We
640 thank Enrique Lara for the discussions and critiques during the construction of this
641 project. We thank Cori Tice for her help with R and advice on plot aesthetics. This
642 work was supported in part by the Fundação de Amparo à Pesquisa do Estado de
643 São Paulo (FAPESP) grants 2019/22692-8 and 2021/09529-0 awarded to A.L.P.S.
644 and grant 2019/22815-2 awarded to D.J.G.L., and by the United States National
645 Science Foundation (NSF) Division of Environmental Biology (DEB) grant 2100888

646 (http://www.nsf.gov) awarded to M.W.B. KD was funded by the German Research
647 Foundation grant 399699069 - DU 1863/1, Y.E. was supported by NSERC grant
648 298366-2019 to Alastair Simpson (Dalhousie University).

649

650 **References**

- 651 1. S. Geisen, *et al.*, Soil protists: a fertile frontier in soil biology research. *FEMS*
652 *Microbiol. Rev.* 42, 293–323 (2018).
- 653 2. D. Singer, *et al.*, Protist taxonomic and functional diversity in soil, freshwater and
654 marine ecosystems. *Environ. Int.* 146, 106262 (2021).
- 655 3. P. A. Cohen, L. A. Riedman, It's a protist-eat-protist world: recalcitrance,
656 predation, and evolution in the Tonian–Cryogenian ocean. *Emerg. Top. Life Sci.* 2,
657 173–180 (2018).
- 658 4. I. Zachar, E. Szathmáry, Breath-giving cooperation: Critical review of origin of
659 mitochondria hypotheses: Major unanswered questions point to the importance of
660 early ecology. *Biol. Direct* 12, 1–26 (2017).
- 661 5. L. Eme, T. J. Ettema, The eukaryotic ancestor shapes up. *Nature* 562, 352-353
662 (2018).
- 663 6. S. M. Porter, Insights into eukaryogenesis from the fossil record. *Interface Focus*.
664 10, 20190105 (2020).
- 665 7. S. Xiao, Q. Tang, After the boring billion and before the freezing millions:
666 evolutionary patterns and innovations in the Tonian Period. *Emerg. Top. Life Sci.* 2,
667 161–171 (2018).
- 668 8. G. Li, *et al.*, An assemblage of macroscopic and diversified carbonaceous
669 compression fossils from the Tonian Shiwangzhuang Formation in western
670 Shandong, North China. *Precambrian Res.* 346, 105801 (2020).
- 671 9. Q. Tang, K. Pang, X. Yuan, S. Xiao, A one-billion-year-old multicellular
672 chlorophyte. *Nat. Ecol. Evol.* 4, 543–549 (2020).

- 673 10. A. Del Cortona, *et al.*, Neoproterozoic origin and multiple transitions to
674 macroscopic growth in green seaweeds. *Proc. Natl. Acad. Sci. U.S.A.* 117, 2551–
675 2559 (2020).
- 676 11. J. J. Brocks, *et al.*, Lost world of complex life and the late rise of the eukaryotic
677 crown. *Nature* 618, 767–773 (2023).
- 678 12. P. A. Cohen, R. B. Kodner, The earliest history of eukaryotic life: uncovering an
679 evolutionary story through the integration of biological and geological data. *Trends
680 Ecol. Evol.* 37, 246–256 (2022).
- 681 13. D. B Mills, *et al.*, Eukaryogenesis and oxygen in earth history. *Nat. Ecol. Evol.* 6,
682 520–532 (2022).
- 683 14. J. Kang, B. Gill, R. Reid, F. Zhang, S. Xiao, Nitrate limitation in early
684 Neoproterozoic oceans delayed the ecological rise of eukaryotes. *Sci. Adv.* 9,
685 eade9647 (2023).
- 686 15. R. Siever, The silica cycle in the Precambrian. *Geochim. Cosmochim. Acta* 56,
687 3265–3272 (1992).
- 688 16. C. T. Reinhard, *et al.*, Evolution of the global phosphorus cycle. *Nature* 541,
689 386–389 (2017).
- 690 17. C. T. Reinhard, *et al.*, The impact of marine nutrient abundance on early
691 eukaryotic ecosystems. *Geobiology* 18, 139–151 (2020).
- 692 18. S. M. Porter, A. H. Knoll, Testate amoebae in the Neoproterozoic Era: evidence
693 from vase-shaped microfossils in the Chuar Group, Grand Canyon. *Paleobiology* 26,
694 360–385 (2000).
- 695 19. S. M. Porter, R. Meisterfeld, A. H. Knoll, Vase-shaped microfossils from the
696 Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern
697 testate amoebae. *J. Paleontol.* 77, 409–429 (2003).
- 698 20. L. Morais, *et al.*, Insights into vase-shaped microfossil diversity and
699 Neoproterozoic biostratigraphy in light of recent Brazilian discoveries. *J. Paleontol.*
700 93, 612–627 (2019).

- 701 21. D. J. Lahr, *et al.*, Phylogenomics and morphological reconstruction of Arcellinida
702 testate amoebae highlight diversity of microbial eukaryotes in the Neoproterozoic.
703 *Curr. Biol.* 29, 991–1001 (2019).
- 704 22. S. M. Porter, L. A. Riedman, Evolution: ancient fossilized amoebae find their
705 home in the tree. *Curr. Biol.* 29, R212–R215 (2019).
- 706 23. C. Berney, J. Pawlowski, A molecular time-scale for eukaryote evolution
707 recalibrated with the continuous microfossil record. *Proc. Royal Soc. B: Biol. Sci.*
708 273, 1867–1872 (2006).
- 709 24. M. M. Mus, M. Moczydłowska, A. H. Knoll, Morphologically diverse vase-shaped
710 microfossils from the Russøya Member, Elbobreen Formation, in Spitsbergen.
711 *Precambrian Res.* 350, 105899 (2020).
- 712 25. D. J Lahr, An emerging paradigm for the origin and evolution of shelled
713 amoebae, integrating advances from molecular phylogenetics, morphology and
714 paleontology. *Mem. Inst. Oswaldo Cruz* 116, e200620 (2021).
- 715 26. C. Strullu-Derrien, P. Kenrick, T. Goral, A. H. Knoll, Testate amoebae in the 407-
716 million-year-old Rhynie Chert. *Curr. Biol.* 29, 461–467 (2019).
- 717 27. S. Kang, *et al.*, Between a pod and a hard test: the deep evolution of amoebae.
718 *Mol. Biol. Evol.* 34, 2258–2270 (2017).
- 719 28. C. M. Dehler, C. M. Fanning, P. K. Link, E. M. Kingsbury, D. Rybczynski,
720 Maximum depositional age and provenance of the Uinta Mountain Group and Big
721 Cottonwood Formation, northern Utah: Paleogeography of rifting western Laurentia.
722 *Bulletin* 122, 1686–1699 (2010).
- 723 29. V. N. Sergeev, J. W. Schopf, Taxonomy, paleoecology and biostratigraphy of the
724 late Neoproterozoic Chichkan microbiota of South Kazakhstan: the marine biosphere
725 on the eve of metazoan radiation. *J. Paleontol.* 84, 363–401 (2010).
- 726 30. J. V. Strauss, A. D. Rooney, F. A. Macdonald, A. D. Brandon, A. H. Knoll, 740
727 Ma vase-shaped microfossils from Yukon, Canada: Implications for Neoproterozoic
728 chronology and biostratigraphy. *Geology* 42, 659–662 (2014).

- 729 31. L. A. Riedman, S. M. Porter, C. R. Calver, Vase-shaped microfossil
730 biostratigraphy with new data from Tasmania, Svalbard, Greenland, Sweden and the
731 Yukon. *Precambrian Res.* 319, 19–36 (2018).
- 732 32. P. A. Cohen, S. W. Irvine, J. V. Strauss, Vase-shaped microfossils from the
733 Tonian Callison Lake Formation of Yukon, Canada: taxonomy, taphonomy and
734 stratigraphic palaeobiology. *Palaeontology* 60, 683–701 (2017).
- 735 33. M. Moczydłowska, V. Pease, S. Willman, L. Wickström, H. Agić, A Tonian age for
736 the Visingsö Group in Sweden constrained by detrital zircon dating and
737 biochronology: implications for evolutionary events. *Geol. Mag.* 155, 1175–1189
738 (2018).
- 739 34. B. Freitas, *et al.*, Cryogenian glaciostatic and eustatic fluctuations and massive
740 Marinoan-related deposition of Fe and Mn in the Urucum District, Brazil. *Geology* 49,
741 1478–1483 (2021).
- 742 35. A. D. Rooney, *et al.*, Coupled Re-Os and U-Pb geochronology of the Tonian
743 Chuar Group, Grand Canyon. *GSA Bull.* 130, 1085–1098 (2018).
- 744 36. C. Dehler, *et al.*, Precise U-Pb age models refine Neoproterozoic western
745 Laurentian rift initiation, correlation, and Earth system changes. *Precambrian Res.*
746 396, 107156 (2023).
- 747 37. A. K. Tice, *et al.*, Phylofisher: a phylogenomic package for resolving eukaryotic
748 relationships. *PLoS Biol.* 19, e3001365 (2021).
- 749 38. R. E. Jones, *et al.*, Create, Analyze, and Visualize Phylogenomic Datasets Using
750 PhyloFisher. *Curr. Protoc.* 4, e969 (2024).
- 751 39. J. F. Strassert, I. Irisarri, T. A. Williams, F. Burki, A molecular timescale for
752 eukaryote evolution with implications for the origin of red algal-derived plastids. *Nat.*
753 *Commun.* 12, 1879 (2021).
- 754 40. L. W. Parfrey, D. J. Lahr, A. H. Knoll, L. A. Katz, Estimating the timing of early
755 eukaryotic diversification with multigene molecular clocks. *Proc. Natl. Acad. Sci.*
756 *U.S.A.* 108, 13624–13629 (2011).

- 757 41. L. Eme, S. C. Sharpe, M. W. Brown, A. J. Roger, On the age of eukaryotes:
758 evaluating evidence from fossils and molecular clocks. *Cold Spring Harb. Perspect.*
759 *Biol.* 6, a016139 (2014).
- 760 42. M. Dos Reis, *et al.*, Uncertainty in the timing of origin of animals and the limits of
761 precision in molecular timescales. *Curr. Biol.* 25, 2939–2950 (2015).
- 762 43. A. R. Schmidt, W. Schönborn, U. Schäfer, Diverse fossil amoebae in German
763 Mesozoic amber. *Palaeontology* 47, 185–197 (2004).
- 764 44. A. Farooqui, A. Kumar, N. Jha, A. Pande, D. Bhattacharya, A thecamoebian
765 assemblage from the Manjir formation (early Permian) of northwest Himalaya, India.
766 *Earth Sci. India* 3 (2010).
- 767 45. V. Girard, D. Néraudeau, S. M. Adl, G. Breton, Protist-like inclusions in amber, as
768 evidenced by Charentes amber. *Eur. J. Protistol.* 47, 59–66 (2011).
- 769 46. L. A. Riedman, P. M. Sadler, Global species richness record and biostratigraphic
770 potential of early to middle Neoproterozoic eukaryote fossils. *Precambrian Res.* 319,
771 6–18 (2018).
- 772 47. R. Guilbaud, S. W. Poulton, N. J. Butterfield, M. Zhu, G. A. Shields-Zhou, A
773 global transition to ferruginous conditions in the early Neoproterozoic oceans. *Nat.*
774 *Geosci.* 8, 466–470 (2015).
- 775 48. H. Wang, *et al.*, A benthic oxygen oasis in the early Neoproterozoic ocean.
776 *Precambrian Res.* 355, 106085 (2021).
- 777 49. S. Porter, The rise of predators. *Geology* 39, 607–608 (2011).
- 778 50. A. H. Knoll, Paleobiological perspectives on early eukaryotic evolution. *Cold*
779 *Spring Harb. Perspect. Biol.* 6, a016121 (2014).
- 780 51. S. Geisen, *et al.*, Pack hunting by a common soil amoeba on nematodes.
781 *Environ. Microbiol.* 17, 4538–4546 (2015).

- 782 52. K. Dumack, C. Kahlich, D. J. Lahr, M. Bonkowski, Reinvestigation of *Phryganella*
783 *paradoxa* (Arcellinida, Amoebozoa) Penard 1902. *J. Eukaryot. Microbiol.* 66, 232–
784 243 (2019).
- 785 53. A. H. Estermann, *et al.*, Fungivorous protists in the rhizosphere of *Arabidopsis*
786 *thaliana*—diversity, functions, and publicly available cultures for experimental
787 exploration. *Soil Biol. Biochem.* 187, 109206 (2023).
- 788 54. K. Dumack, *et al.*, It's time to consider the Arcellinida shell as a weapon. *Eur. J.*
789 *Protistol.* 92, 126051 (2024).
- 790 55. S. M. Porter, Tiny vampires in ancient seas: evidence for predation via
791 perforation in fossils from the 780–740 million-year-old Chuar Group, Grand Canyon,
792 USA. *Proc. Royal Soc. B: Biol. Sci.* 283, 20160221 (2016).
- 793 56. C. Cousyn, *et al.*, Rapid, local adaptation of zooplankton behavior to changes in
794 predation pressure in the absence of neutral genetic changes. *Proc. Natl. Acad. Sci.*
795 *U.S.A.* 98, 6256–6260 (2001).
- 796 57. H. D. Rundle, S. M. Vamosi, D. Schluter, Experimental test of predation's effect
797 on divergent selection during character displacement in sticklebacks. *Proc. Natl.*
798 *Acad. Sci. U.S.A.* 100, 14943–14948 (2003).
- 799 58. J. R. Meyer, R. Kassen, The effects of competition and predation on
800 diversification in a model adaptive radiation. *Nature* 446, 432–435 (2007).
- 801 59. P. F. Hoffman, Z. X. Li, A palaeogeographic context for Neoproterozoic
802 glaciation. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 277, 158–172 (2009).
- 803 60. A. D. Rooney, J. V. Strauss, A. D. Brandon, F. A. Macdonald, A Cryogenian
804 chronology: Two long-lasting synchronous Neoproterozoic glaciations. *Geology* 43,
805 459–462 (2015).
- 806 61. J. P. Pu, *et al.*, Dodging snowballs: Geochronology of the Gaskiers glaciation
807 and the first appearance of the Ediacaran biota. *Geology* 44, 955–958 (2016).
- 808 62. B. Runnegar, Loophole for snowball Earth. *Nature* 405, 403–404 (2000).

- 809 63. W. Vincent, *et al.*, Ice shelf microbial ecosystems in the high arctic and
810 implications for life on snowball Earth. *Naturwissenschaften* 87, 137–141 (2000).
- 811 64. P. F. Hoffman, D. P. Schrag, The snowball Earth hypothesis: testing the limits of
812 global change. *Terra nova* 14, 129–155 (2002).
- 813 65. R. M. Morgan-Kiss, J. C. Priscu, T. Pocock, L. Gudynaite-Savitch, N. P. Huner,
814 Adaptation and acclimation of photosynthetic microorganisms to permanently cold
815 environments. *Microbiol. Mol. Biol. Rev.* 70, 222–252 (2006).
- 816 66. A. J. Campbell, E. D. Waddington, S. G. Warren, Refugium for surface life on
817 Snowball Earth in a nearly-enclosed sea? A first simple model for sea-glacier
818 invasion. *Geophys. Res. Lett.* 38 (2011).
- 819 67. A. J. Campbell, E. D. Waddington, S. G. Warren, Refugium for surface life on
820 Snowball Earth in a nearly enclosed sea? A numerical solution for sea-glacier
821 invasion through a narrow strait. *J. Geophys. Res. Oceans*. 119, 2679–2690 (2014).
- 822 68. H. M. Lawal, *et al.*, Cold climate adaptation is a plausible cause for evolution of
823 multicellular sporulation in Dictyostelia. *Sci. Rep.* 10, 8797 (2020).
- 824 69. L. Morais, *et al.*, Diverse vase-shaped microfossils within a Cryogenian glacial
825 setting in the Urucum Formation (Brazil). *Precambrian Res.* 367, 106470 (2021).
- 826 70. M. M. Mus, M. Moczydowska, Internal morphology and taphonomic history of the
827 Neoproterozoic vase-shaped microfossils from the Visings Group, Sweden. *Nor. Geol. Tidsskr.* 80, 213–228 (2000).
- 829 71. G. J. Retallack, Why was there a Neoproterozoic Snowball Earth? *Precambrian*
830 *Res.* 385, 106952 (2023).
- 831 72. K. Wang, *et al.*, Shallow-marine testate amoebae with internal structures from
832 the Lower Devonian of China. *Isience* 26 (2023).
- 833 73. C. H. Wellman, P. K. Strother, The terrestrial biota prior to the origin of land
834 plants (embryophytes): a review of the evidence. *Palaeontology* 58, 601–627 (2015).

- 835 74. J. Žárský, V. Žárský, M. Hanáček, V. Žárský, Cryogenian glacial habitats as a
836 plant terrestrialisation cradle—the origin of the anhydrophytes and Zygnematophyceae
837 split. *Front. Plant Sci.* 12, 735020 (2022).
- 838 75. F. Lutzoni, *et al.*, Contemporaneous radiations of fungi and plants linked to
839 symbiosis. *Nat. Commun.* 9, 5451 (2018).
- 840 76. S. Picelli, *et al.*, Full-length RNA-seq from single cells using Smart-seq2. *Nat.*
841 *Protoc.* 9, 171–181 (2014).
- 842 77. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina
843 sequence data. *Bioinformatics* 30, 2114–2120 (2014).
- 844 78. B. J. Haas, *et al.*, *De novo* transcript sequence reconstruction from RNA-seq
845 using the Trinity platform for reference generation and analysis. *Nat. Protoc.* 8,
846 1494–1512 (2013).
- 847 79. M. Manni, M. R. Berkeley, M. Seppey, E. M. Zdobnov, BUSCO: assessing
848 genomic data quality and beyond. *Curr. Protoc.* 1, e323 (2021).
- 849 80. B. Q. Minh, *et al.*, IQ-TREE 2: new models and efficient methods for phylogenetic
850 inference in the genomic era. *Mol. Biol. Evol.* 37, 1530–1534 (2020).
- 851 81. H. C. Wang, B. Q. Minh, E. Susko, A. J. Roger, Modeling site heterogeneity with
852 posterior mean site frequency profiles accelerates accurate phylogenomic
853 estimation. *Syst. Biol.* 67, 216–235 (2018).
- 854 82. A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-
855 analysis of large phylogenies. *Bioinformatics* 30, 1312–1313 (2014).
- 856 83. C. Zhang, M. Rabiee, E. Sayyari, S. Mirarab, ASTRAL-III: polynomial time
857 species tree reconstruction from partially resolved gene trees. *BMC Bioinform.* 19,
858 15–30 (2018).
- 859 84. M. J. Benton, *et al.*, Constraints on the timescale of animal evolutionary history.
860 *Palaeontol. Electron.* 18.1.1FC; 1-106 (2015).

861 85. Z. Yang, PAML 4: phylogenetic analysis by maximum likelihood. *Mol. Biol. Evol.*
862 24, 1586–1591 (2007).

863 86. A. Meade, M. Pagel, “Ancestral state reconstruction using BayesTraits” in
864 Environmental Microbial Evolution: Methods and Protocols, H. Luo, Eds. (Springer,
865 2022), pp. 255–266.

866 87. M. Pagel, The maximum likelihood approach to reconstructing ancestral
867 character states of discrete characters on phylogenies. *Syst. Biol.* 48, 612–622
868 (1999).

869

870

871

872

873

874

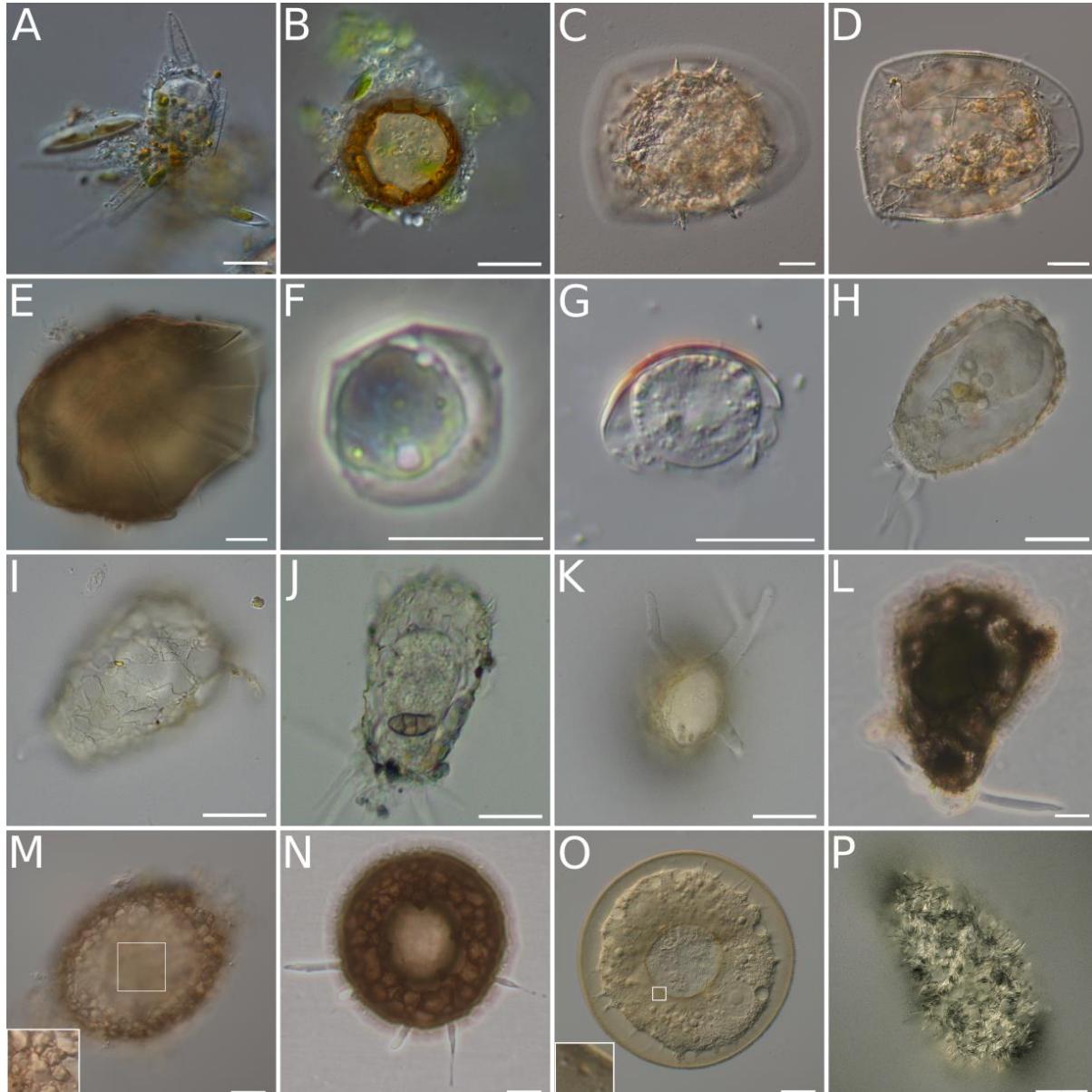
875

876

877

878

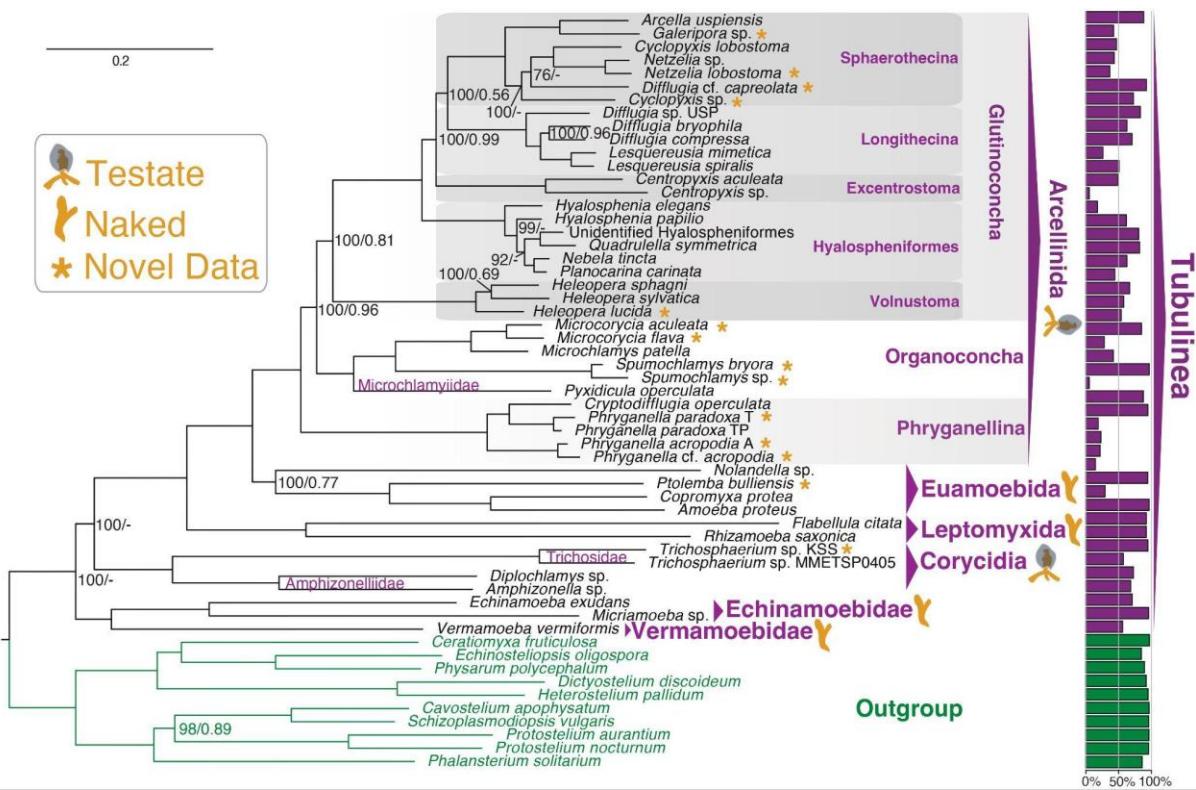
879


880

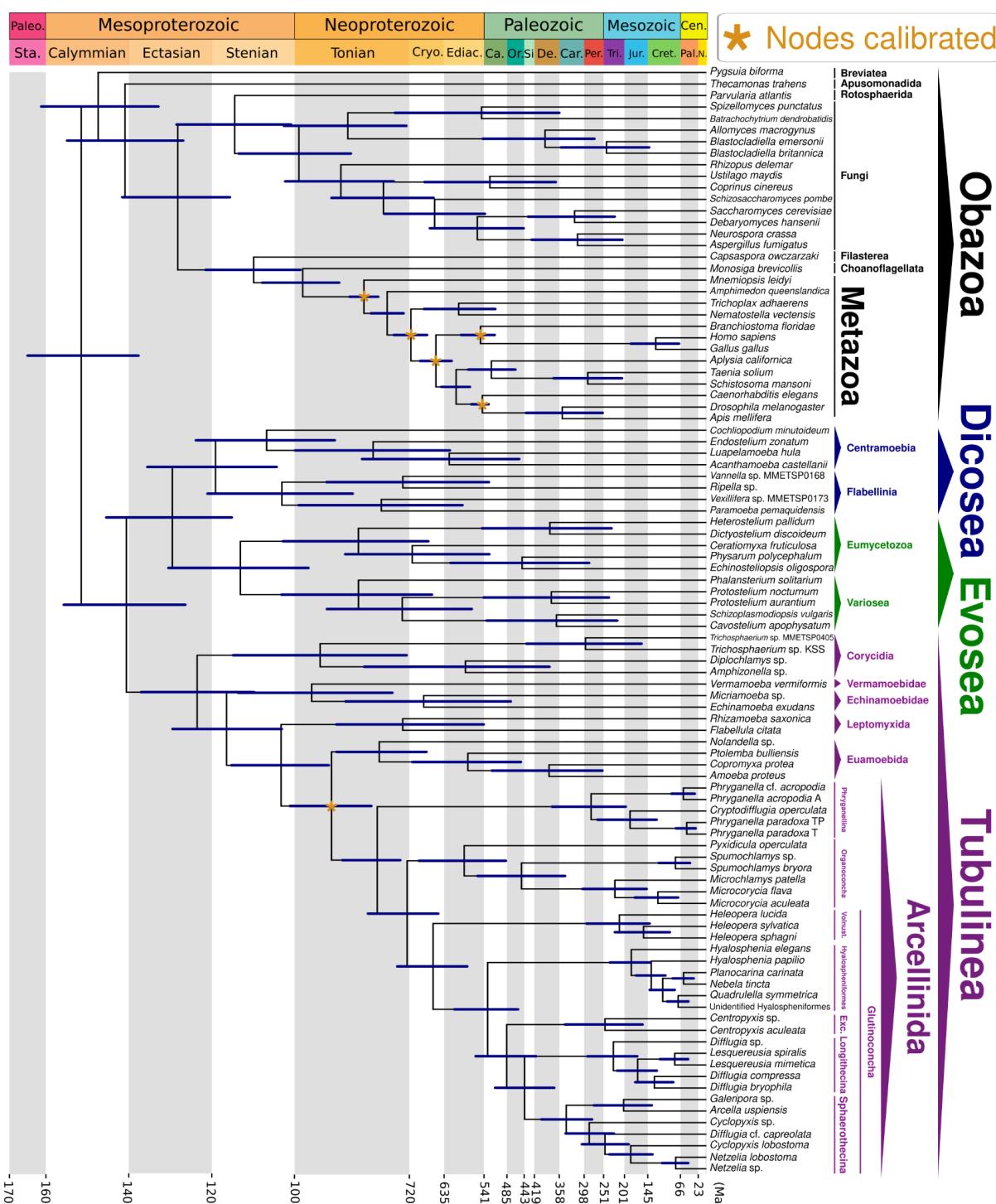
881

882

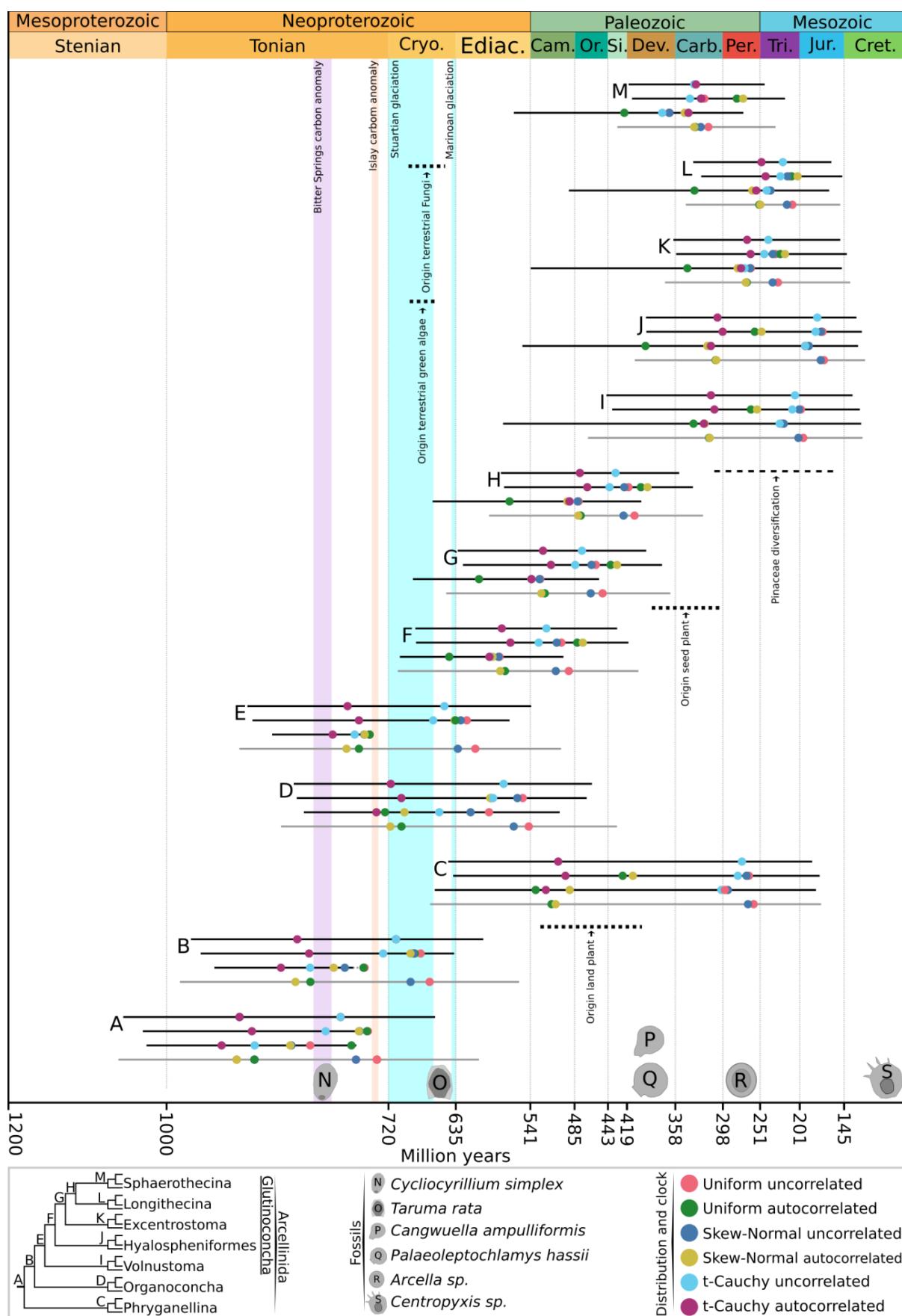
883


884 **Figures**

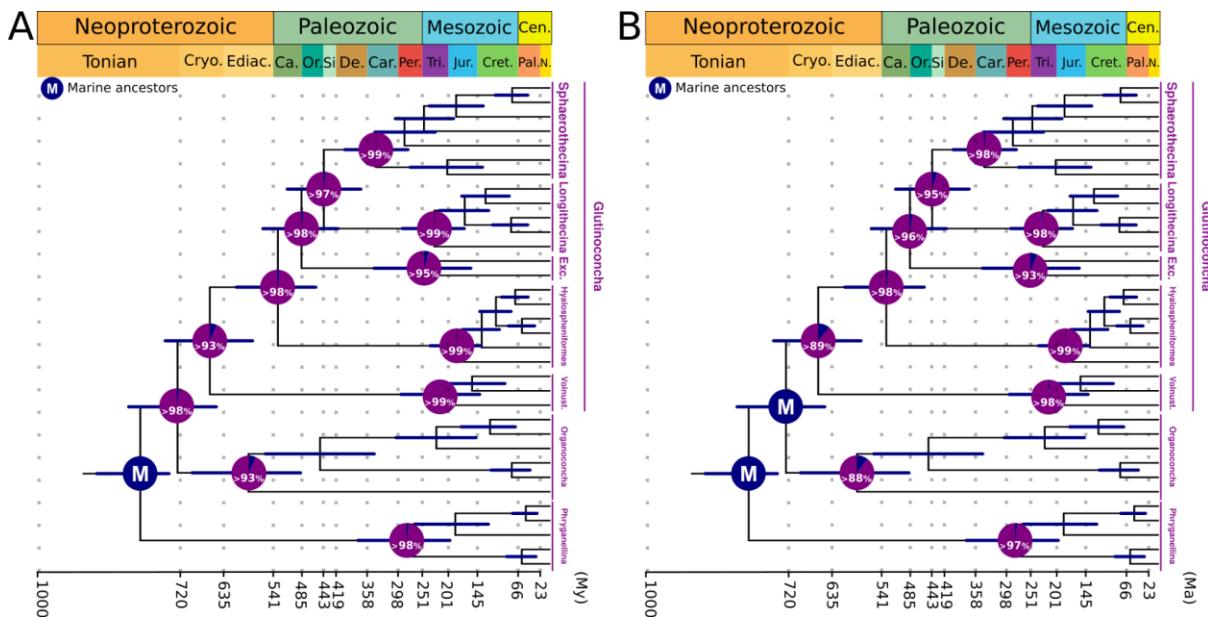
885


886 **Figure 1. Sampled testate amoebae — Arcellinida and Corycidia.** The pictured
887 organisms were photodocumented prior to molecular processing and represent
888 individuals or cultures from which the transcriptomic data was obtained. The scale
889 bars represent 20 μm , except when specified. **A.** *Phryganella paradoxa* T, lateral
890 view. **B.** *Phryganella acropodia* A, apertural view. **C - D.** *Microcorycia aculeata*,
891 dorsal view (C) and apertural view (D); **E.** *Microcorycia flava*, dorsal view focusing on
892 the flexible part of the shell; **F.** *Spumochlamys* sp., dorsal view; **G.** *Spumochlamys*
893 *bryora*, lateral view; **H - K.** *Heleopera lucida* comb. nov. (previously *Diffugia lucida*),
894 lateral view focusing on the cell within the shell (H), lateral view focusing on the shell
895 (I - J), and apertural view focusing on the compressed aspect of the shell (K); **L.**
896 *Diffugia* cf. *capreolata*, lateral view, scale bar 40 μm ; **M.** *Netzelia lobostoma*, lateral
897 view, white square focusing on details of the shell; **N.** *Cyclopyxis* sp., apertural view,
898 scale bar 40 μm ; **O.** *Galeripora* sp., apertural view, white square focusing on the
899 pores which surround the shell aperture; **P.** *Trichosphaerium* sp. KSS. Measured

900 morphometric characteristics of the newly sequenced testate amoebae taxa are
901 present on **Dataset S01, Table S2**.

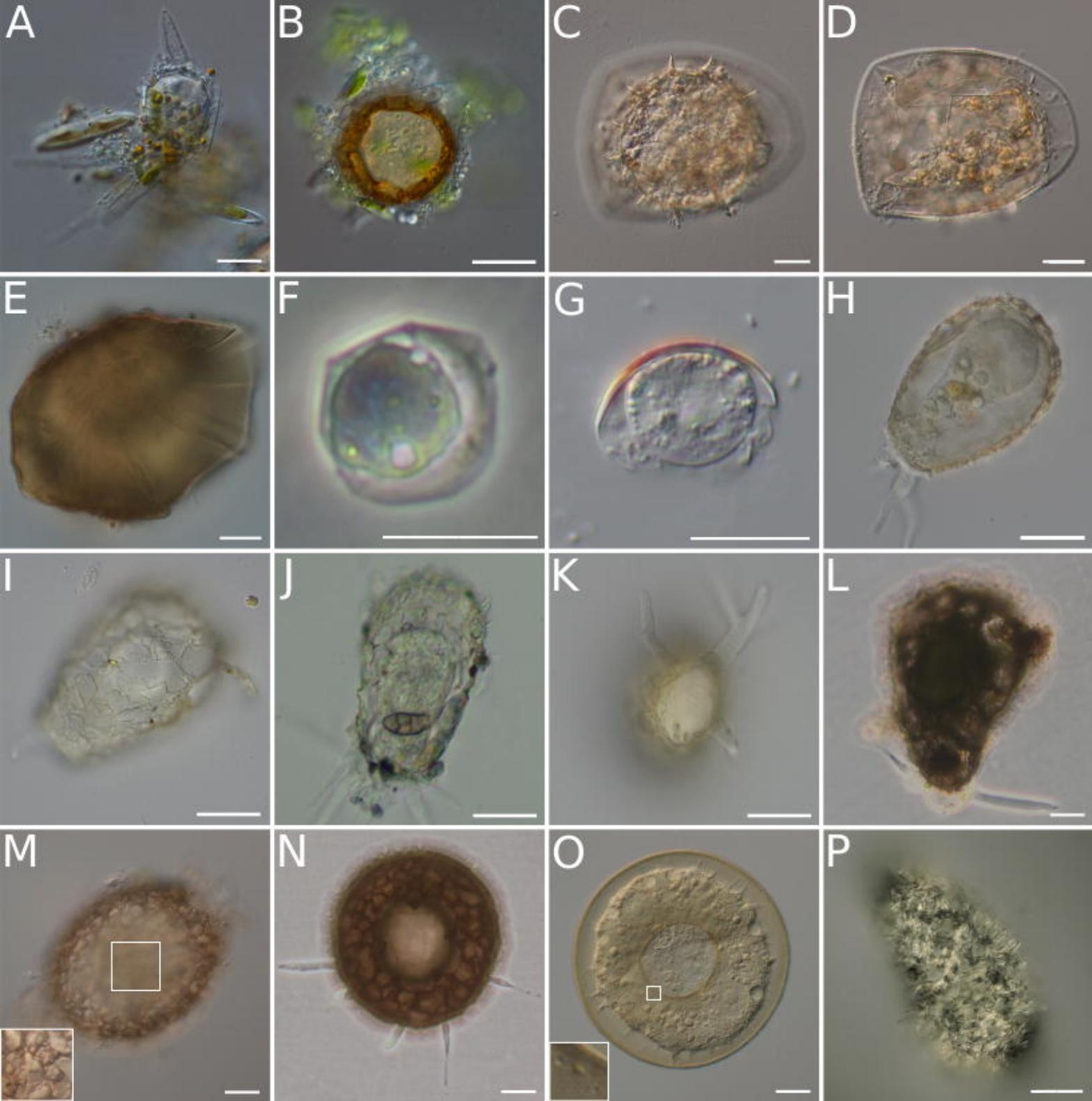

902

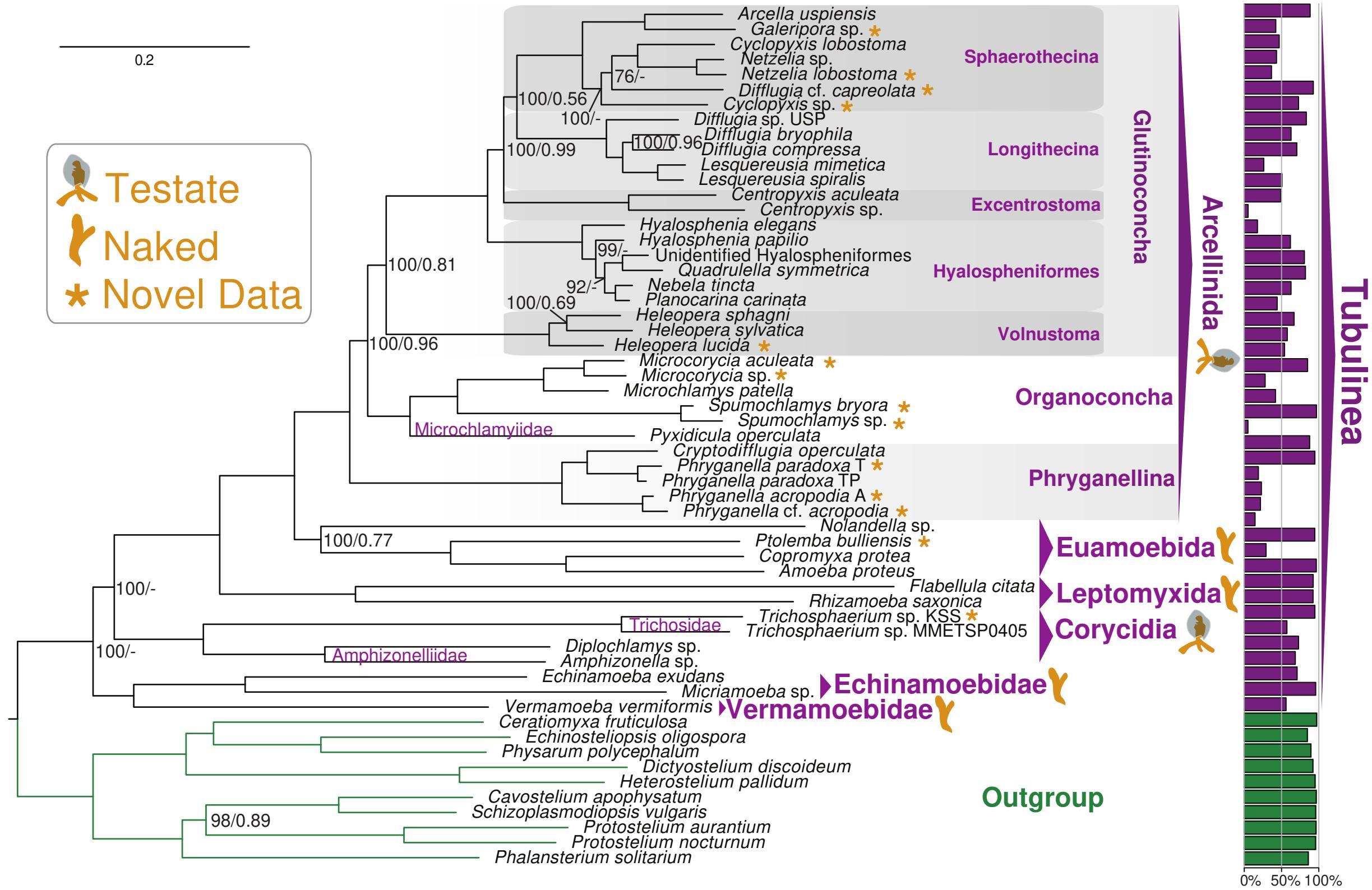
903 **Figure 2. The tree of amoebozoan testate amoebae.** 226 genes (70,428 amino
904 acid sites) phylogeny of amoebozoan testate amoebae rooted with Evosea
905 (Amoebozoa). The tree was initially built using IQ-TREE2 v. 2.0-rc1 under the
906 LG+C20+G4 model of protein evolution and further used to infer a Posterior Means
907 Site Frequency model using the ML model LG+C60+G4+PMSF. Topological support
908 was assessed by 100 Maximum Likelihood Real Bootstrap Replicates (MLRB) and
909 local posterior probability values (LPP) calculated using ASTRAL-III v. 5.7.3, and are
910 shown in the format (MLRB/LPP).

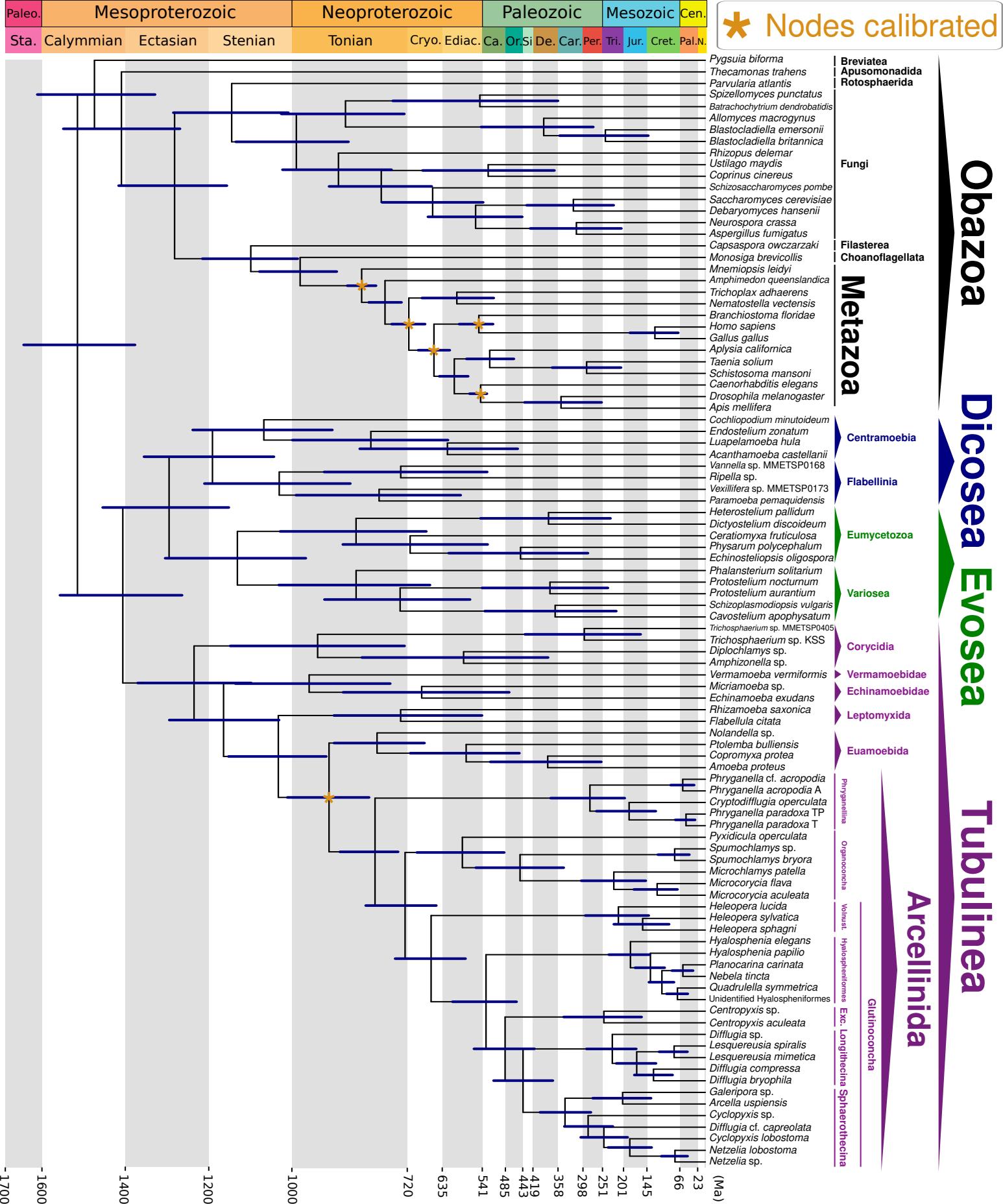


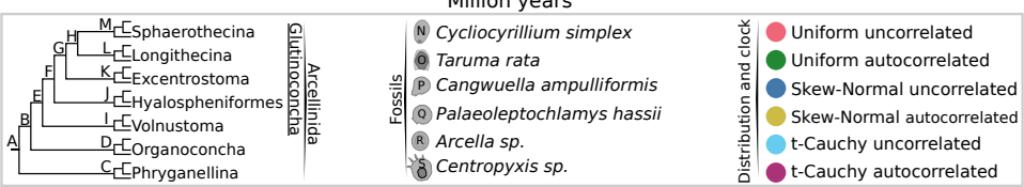
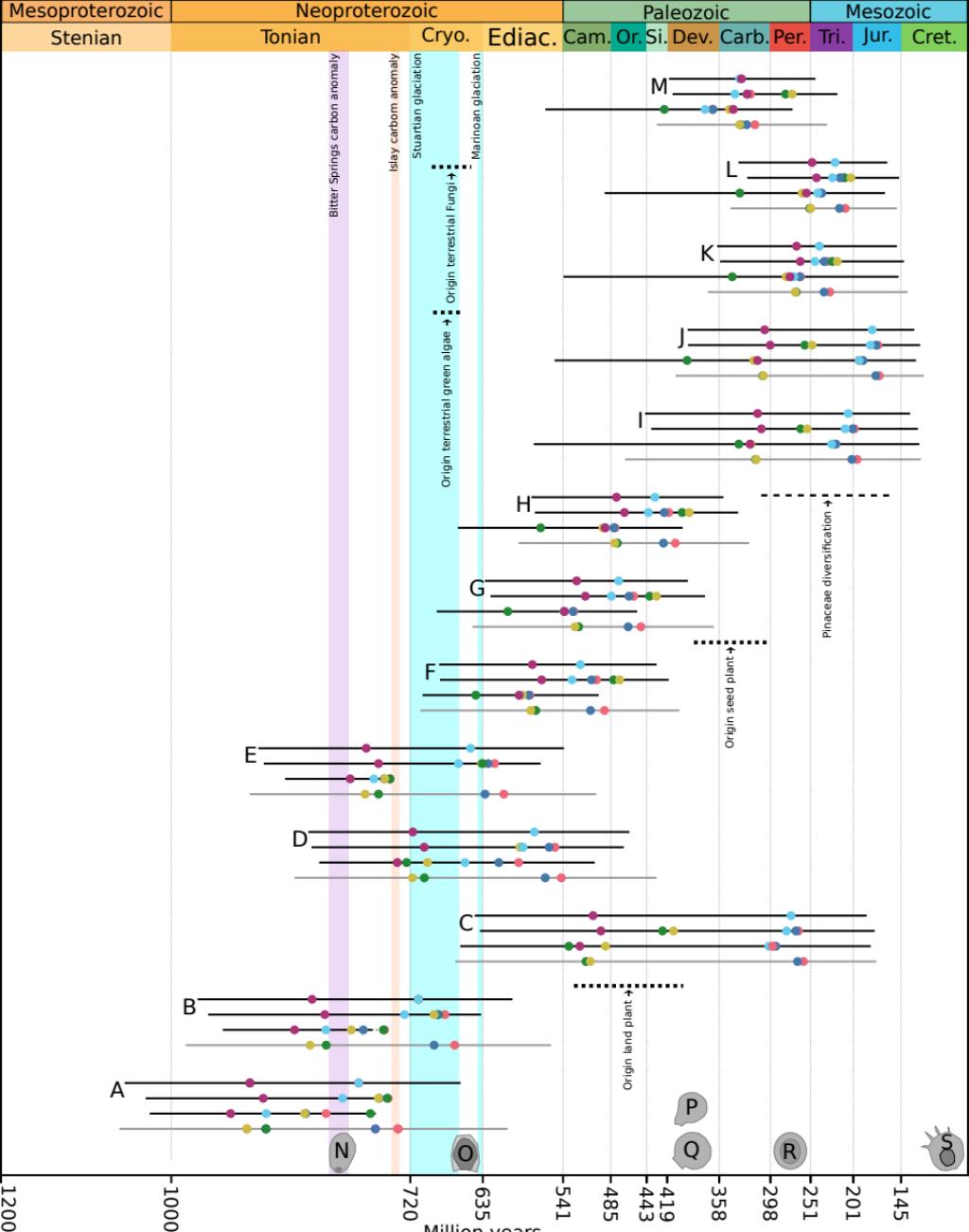
911
912 **Figure 3. Amorphea time-calibrated tree inferred under autocorrelated relaxed**
913 **clock model, applying a truncated-Cauchy distribution for node calibration and**
914 **drift parameter of $\alpha = 2$ and $\beta = 2$, considering VSMs as stem Arcellinida to**
915 **calibrate Arcellinida+Euamoebida node.** Bars at nodes are 95% highest
916 probability density confidence intervals (HPD CI). Asterisks indicate the nodes
917 calibrated based on external fossil information. Out of the 36 time-calibrated trees
918 generated, we display here the one representing the analysis that estimated the
919 youngest minimum 95% HPD CI for the two earliest nodes of Arcellinida, thus
920 showing the youngest age estimated for the origin of nodes leading to extant
921 members of the Arcellinida Order. The results and time-calibrated trees for all

922 experiments are present in the supplemental material (**Dataset S01, Table S11 and**
923 **Appendix S01, Fig. S6 - S43**). Abbreviations: Exc.- Excentrotoma; Vonust. -
924 Volnustoma; Paleo. - Paleoproterozoic; Sta. - Statherian; Cryo. - Cryogenian; Ediac.
925 - Ediacaran; Ca. - Cambrian; Or. Ordovician; Si - Silurian; De. - Devonian; Car.
926 Carboniferous; Per. - Permian; Tri. - Triassic; Jur. - Jurassic; Cret. - Cretaceous;
927 Cen. - Cenozoic; Pal. - Paleogene; N. - Neogene; My - Million Years.

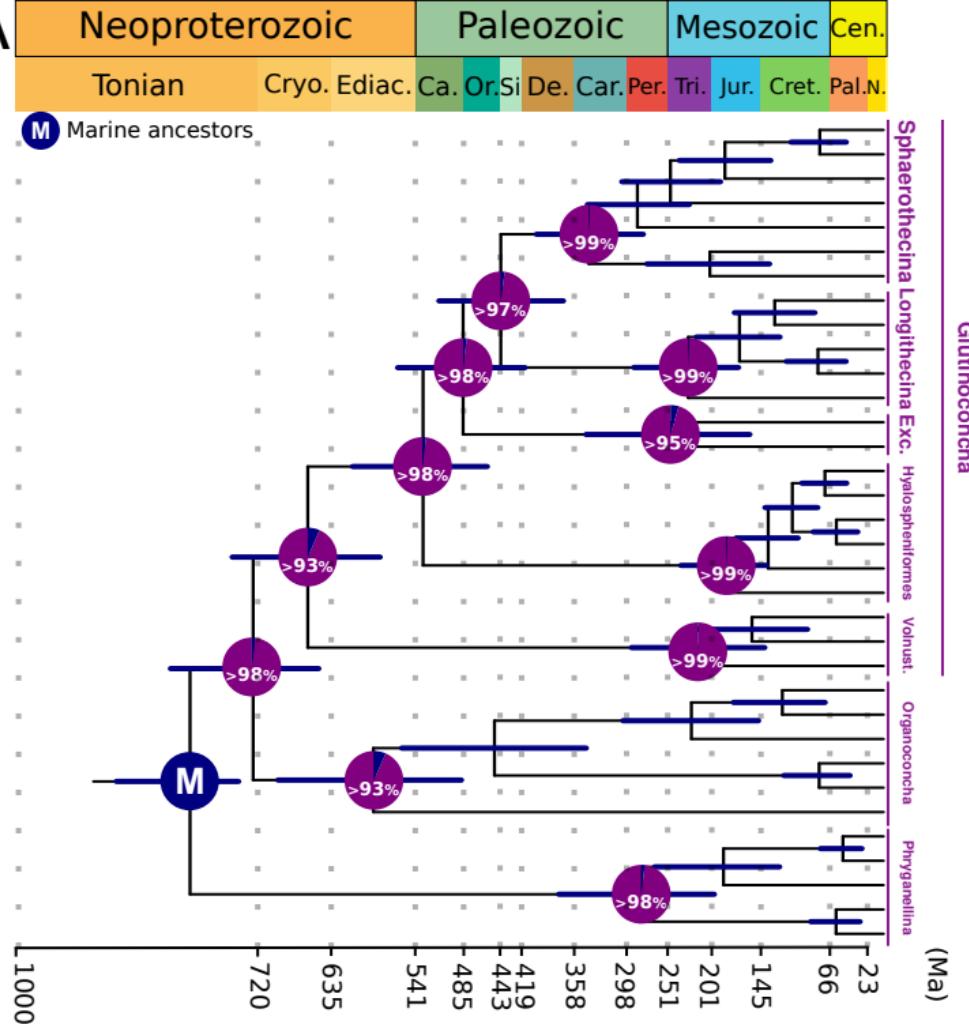


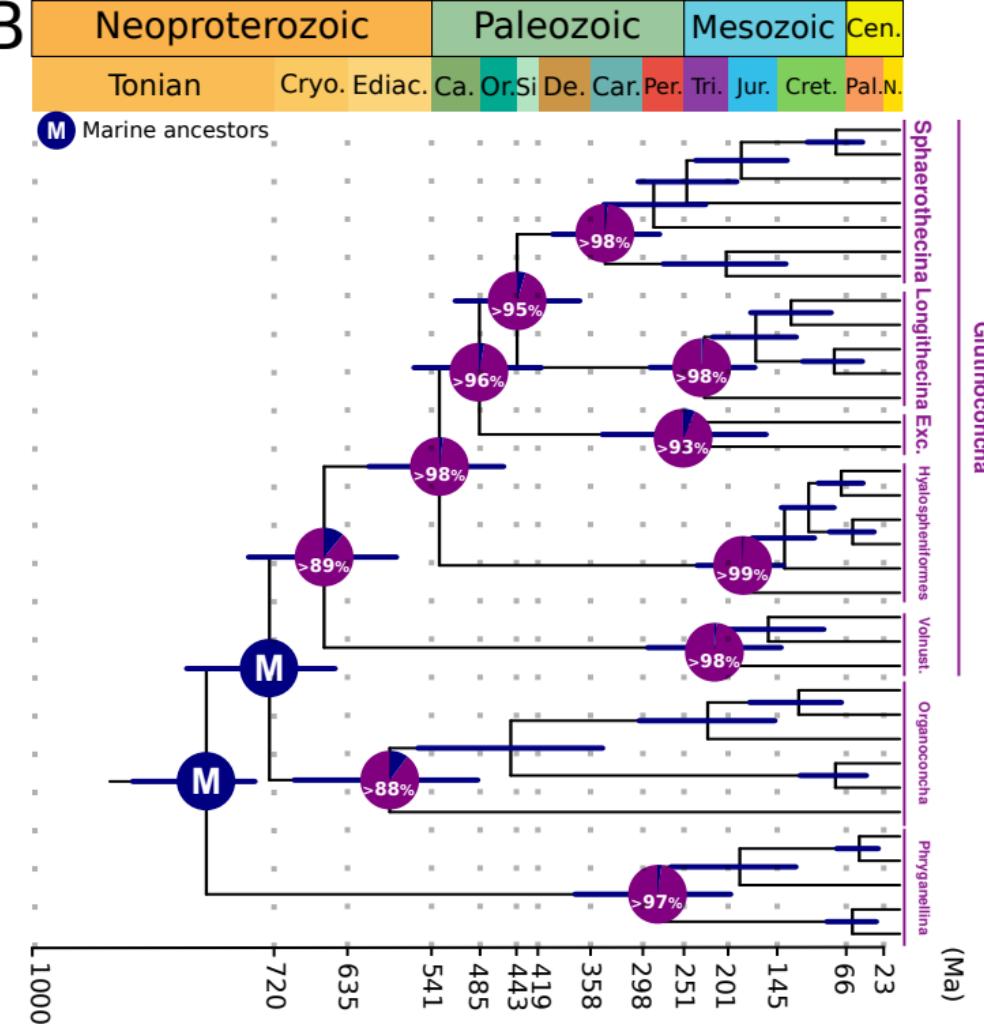

932 suggested by previous studies (horizontal dotted lines; 75). Displayed for each node
933 are four bars representing, from bottom to top, the calibration strategy not
934 considering VSM record to calibrate amoebozoan nodes (gray bar), the calibration
935 strategy considering VSMs as derived crown Arcellinida, calibration strategy
936 considering VSMs as basal crown Arcellinida, and calibration strategy considering
937 VSMs as stem Arcellinida. The bars represent the combination of all 95% highest
938 probability density confidence intervals estimated by each distribution-clock model
939 considered and the colored dots represent the mean estimated time by each
940 distribution-clock model. The results and time-calibrated trees for all experiments are
941 present in the supplemental material (**Dataset S01, Table S11 and Appendix S01**,
942 **Fig. S6 - S43**).





Figure 5. Ancestral reconstructions of Arcellinida habitats using BayesTraits.

Pie charts at each node indicate the mean probabilities of a hypothetical marine ancestor (blue) or a hypothetical terrestrial ancestor (purple). **A.** Reconstruction considering Arcellinida ancestor as marine, implying at least two independent transition events (2TE). **B.** Reconstruction considering Arcellinida and Organococoncha+Glutinoconcha ancestors as marine, implying at least three independent transition events (3TE). Bars at nodes are 95% highest probability density confidence intervals estimated by the calibration strategy using an autocorrelated relaxed clock model, applying a truncated-Cauchy distribution for node calibration and drift parameter of $\alpha = 2$ and $\beta = 2$, considering VSMs as stem Arcellinida to calibrate Arcellinida+Euamoebida node. The complete results are shown on **Dataset S01, Table S12 and Appendix S01, Fig. S44**.





A

B

